精英家教网 > 高中数学 > 题目详情
11.若f(x)=x3+ax2+bx-a2-7a在x=1处取得极大值10,则$\frac{b}{a}$的值为$-\frac{3}{2}$.

分析 求出导函数,根据极值的定义得出f(1)=10,f'(1)=0,且f'(x)=0有实数解,进而得出a,b的值.

解答 解:f(x)=x3+ax2+bx-a2-7a,
f'(x)=3x2+2ax+b,
∵在x=1处取得极大值10,
∴f(1)=10,f'(1)=0,且f'(x)=0有实数解,
∴a=-2(舍去),a=-6,
∴b=1,
∴$\frac{b}{a}$=$-\frac{3}{2}$.
故答案为$-\frac{3}{2}$.

点评 本题考查了极值的概念,属于基础题型,应熟练掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知f(x)=$\left\{\begin{array}{l}{a{x}^{2}+x,x>0}\\{-2x,x≤0}\end{array}\right.$,若不等式f(x-2)≥f(x)对一切x∈R恒成立,则实数a的取值范围为[-$\frac{9}{16},-\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在等差数列{an}中,a1=1,前5项之和等于15.
(1)求数列{an}的通项公式;
(2)设${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,记数列{bn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某几何体的三视图如图所示,若该几何体的体积为$\frac{2π}{3}$,则a的值为(  )
A.1B.2C.2$\sqrt{2}$D.$\root{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a∈R,直线l:x+ay+a-2=0,圆M:(x-1)2+(y-1)2=1,则“a=0”是“直线l与圆M相切”的(  )
A.充分不必要条件B.必要不充分条件
C.充分不必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=alnx+b(a,b∈R),曲线f(x)在x=1处的切线方程为x-y-1=0.
(Ⅰ)求a,b的值;
(Ⅱ)证明:$f(x)+\frac{1}{x}≥1$;
(Ⅲ)已知满足xlnx=1的常数为k.令函数g(x)=mex+f(x)(其中e是自然对数的底数,e=2.71828…),若x=x0是g(x)的极值点,且g(x)≤0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2-2x+1,g(x)=2aln(x-1)(a∈R).
(1)求函数h(x)=f(x)-g(x)的极值;
(2)当a>0时,若存在实数k,m使得不等式g(x)≤kx+m≤f(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ax+xlnx图象在点(e,f(e))(e为自然对数的底数)处的切线斜率为3.
(1)求实数a的值;
(2)若k∈Z,且f(x)-k(x-1)>0对任意x>1恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.等差数列{an}中a1=1,a5-a2=6,则a6的值为(  )
A.5B.11C.13D.15

查看答案和解析>>

同步练习册答案