精英家教网 > 高中数学 > 题目详情
1.函数f(x)=-4x3+6x2+1在[0,3]上的最大值为(  )
A.1B.3C.4D.6

分析 求函数的导数,判断函数的单调性和极值,从而求最值.

解答 解:∵f(x)=-4x3+6x2+1,
∴f′(x)=-12x2+12x=-12(x+1)(x-1);
由f′(x)=0得x=1或x=-1(舍),
当x∈[0,1),f′(x)>0;此时函数f(x)单调递增,
当x∈(1,3]时,f′(x)<0;此时函数f(x)单调递减,
即当x=1时,函数取得极大值同时也是最大值f(1)=-4+6+1=3,
故选:B

点评 本题考查了函数的最值的求法及导数的综合应用,求函数的导数,利用导数判断函数的单调性是解决本题的关键.,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.一个正三棱锥的正视图及俯视图如图所示,则该三棱锥的左视图的面积为(  )
A.6B.$\frac{3\sqrt{3}}{2}$C.$\frac{2\sqrt{21}}{3}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=(m+2)x2+mx+1为偶函数,则f(x)在区间(1,+∞)上是(  )
A.先增后减B.先减后增C.减函数D.增函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.“x2-1>0”是“x>1”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某几何体的三视图如图所示,则此几何体的表面积是20+12$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在三棱锥S-ABC中,侧面SAB、SAC均为边长为$\sqrt{2}$等边三角形,∠BAC=90°,O为BC中点.
(Ⅰ)证明:SO⊥平面ABC;
(Ⅱ)求二面角A-SC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,已知二面角α-BC-β的大小为θ(0≤θ≤$\frac{π}{2}$).在面α内有△ABC,它在面β内的射影为△A′BC.它们的面积分别为S,S′,求证:cosθ=$\frac{S′}{S}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1的短轴的一个端点B与两焦点F1,F2组成三角形的周长为8+8$\sqrt{2}$,且F1B⊥F2B,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列函数中既是奇函数,又是区间(-1,0)上是减函数的(  )
A.y=sinxB.y=-|x-1|C.y=ex-e-xD.y=ln$\frac{1-x}{1+x}$

查看答案和解析>>

同步练习册答案