精英家教网 > 高中数学 > 题目详情
18.设p:x<4,q:0<x<4,则p是q成立的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

分析 根据集合的包含关系判断充分必要性即可.

解答 解:由q⇒p,反之不成立.
∴p是q成立的必要不充分条件.
故选:A.

点评 本题考查充分必要条件的判定,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知二次函数f(x)=x2-bx-2.
(Ⅰ)当b=1,写出函数y=|f(x)|单调递增区间;
(Ⅱ)定义g(x)=$\left\{\begin{array}{l}{|f(x)|,x≥0}\\{f(x),x<0}\end{array}\right.$,若函数y=g(x)-$\frac{1}{2}$b在[-2,2]上有三个零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在30瓶饮料中,有3瓶已过了保质期.从这30瓶饮料中任取2瓶,已知所取的2瓶全在保质期内的概率为$\frac{351}{435}$,则至少取到1瓶已过保质期的概率为$\frac{28}{145}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.对于三次函数f(x)=ax3+bx2+cx+d(a≠0)给出定义:设f′(x)是f(x)的导数,f″(x)是函数f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$,则g($\frac{1}{2016}$)+g($\frac{2}{2016}$)+…+g($\frac{2015}{2016}$)+g($\frac{2016}{2016}$)=$2017\frac{5}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,在△ABC中,B=$\frac{π}{4}$,AC=2$\sqrt{5}$,cosC=$\frac{{2\sqrt{5}}}{5}$.
(1)求sin∠BAC的值及BC的长度;
(2)设BC的中点为D,求中线AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.不等式(|3x-1|-1)•(sinx-2)>0的解集是$(0,\frac{2}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.f(x)=$\frac{1}{2}$(sinx+cosx+|sinx-cosx|)的值域是(  )
A.[-1,1]B.[-$\frac{1}{2}$,$\frac{1}{2}$]C.[-$\frac{{\sqrt{2}}}{2}$,1]D.[-1,$\frac{{\sqrt{2}}}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an},a1=1,$\frac{{2{S_n}}}{n}$=an+1-$\frac{1}{3}$n2-n-$\frac{2}{3}$.
(1)求an
(2)证明:$\frac{1}{a_1}$+$\frac{1}{a_2}$+…+$\frac{1}{a_n}$<$\frac{7}{4}$(n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在四棱锥P-ABCD中,AB⊥PA,AB∥CD,且PB=BC=BD=$\sqrt{6}$,CD=2AB=2$\sqrt{2}$,∠PAD=120°.
(Ⅰ)求证:平面PAD⊥平面PCD;
(Ⅱ)求直线PD与平面PBC所成的角的正弦值.

查看答案和解析>>

同步练习册答案