在三棱锥中,,是等腰直角三角形,,为中点. 则与平面所成的角等于( )
A. | B. | C. | D. |
B
解析试题分析:先作PO⊥平面ABC,垂足为O,根据条件可证得点O为三角形ABC的外心,从而确定点O为AC的中点,然后证明BO是面PAC的垂线,从而得到∠BEO为BE与平面PAC所成的角,在直角三角形BOE中求解即可。
解: 如图:
作PO⊥平面ABC,垂足为O,则∠POA=∠POB=∠POC=90°,,而PA=PB=PC,PO是△POA、△POB、△POC的公共边,∴△POA≌△POB≌△POC,∴AO=BO=CO,则点O为三角形ABC的外心,∵△ABC是等腰直角三角形,∠ABC=90°,∴点O为AC的中点,则BO⊥AC,而PO⊥BO,PO∩AC=O,∴BO⊥平面PAC,连接OE,∴∠BEO为BE与平面PAC所成的角,∵点O为AC的中点,E为PC中点,PA=PB=PC=AC=1,ABC是等腰直角三角形,∠ABC=90°,∴OE为中位线,且OE=,BO=又∵∠BOE=90°,∴∠BEO=45°即BE与平面PAC所成的角的大小为45°,故选B.
考点:直线与平面所成角
点评:本题主要考查了三角形的外心的概念,以及直线与平面所成角和三角形全等等有关知识,同时考查了推理能力,属于中档题.
科目:高中数学 来源: 题型:单选题
关于直线、与平面、,有下列四个命题:
①且,则; ②且,则;
③且,则; ④且,则.
其中假命题的序号是:( )
A.①、② | B.③、④ | C.②、③ | D.①、④ |
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
如图,在正三棱柱ABC-A1B1C1中,AB=2.若二面角C-AB-C1的大小为60°,则异面直线A1B1和BC1所成角的余弦值为
A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
在正方体ABCD—A1B1C1D1中,M、N、P、Q分别是棱AB、BC、CD、CC1的中点,直线MN与PQ所成的度数是 ( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
下列命题中,m,n表示两条不同的直线,a,b,γ表示三个不同的平面
①若m⊥a,n∥a,则m⊥n;
②若a⊥γ,b⊥γ,则a∥b;
③若m∥a,n∥a,则m∥n;
④若a∥b,b∥γ,m⊥a,则m⊥γ.
正确的命题是
A.①③ | B.②③ | C.①④ | D.②④ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com