精英家教网 > 高中数学 > 题目详情
7.已知椭圆的长轴长是焦距的2倍,则椭圆的离心率为$\frac{1}{2}$.

分析 根据离心率的公式直接计算即可.

解答 解:由题可知:2a=2•2c,即a=2c,
∴e=$\frac{c}{a}$=$\frac{1}{2}$,
故答案为:$\frac{1}{2}$.

点评 本题考查求椭圆的离心率,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知点F(1,0),圆E:(x+1)2+y2=8,点P是圆E上任意一点,线段PF的垂直平分线和半径PE相交于Q.求动点Q的轨迹C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知抛物线y2=mx与椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1有一个共同的焦点,则m=(  )
A.8B.-8C.8或-8D.都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某几何体的三视图如图所示,该几何体的体积为$\frac{7π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点M(1,$\frac{\sqrt{6}}{2}$),且离心率为$\frac{\sqrt{2}}{2}$.
(1)求椭圆的标准方程;
(2)若P(-1,$\frac{1}{2}$)是椭圆内一点,椭圆的内接梯形ABCD,(AB∥CD)的对角线AC与BD交于点P,设直线AB在y轴上的截距为m,记f(m)=S△PAB,求f(m)的表达式
(3)求g(m)=[f(m)]2-$\frac{2}{3}$m3+4m-3的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.对于函数f1(x),f2(x),h(x),如果存在实数a,b使得h(x)=a.f1(x)+b.f2(x),那么称h(x)为f1(x),f2(x)的线性函数.
(1)下面给出两组函数,h(x)是否分别为f1(x),f2(x),的线性函数?并说明理由;
第一组:f1(x)=lg$\frac{x}{10}$,f2(x)=lg10x,h(x)=lgx,;
第二组:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1;
(2)设f1(x)=log2x,f2(x)=log${\;}_{\frac{1}{2}}$x,a=2,b=1,线性函数h(x).若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在样本的频率分布直方图中,共有7个小长方形,若中间一个小长方形的面积等于其它6个小长方形的面积和的$\frac{1}{4}$,且样本容量为80,则中间一组的频数为(  )
A.0.25B.0.5C.20D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设全集U={1,2,3,4,5,6},集合A={1,2,3,},B={2,4,5},则∁U(A∪B)=(  )
A.{2}B.{6}C.{1,3,4,5,6}D.{1,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知复数z满足(1+i)z=(3+i)2(i为虚数单位),则z的共轭复数$\overrightarrow{z}$=7+i.

查看答案和解析>>

同步练习册答案