精英家教网 > 高中数学 > 题目详情
15.某几何体的三视图如图所示,该几何体的体积为$\frac{7π}{3}$.

分析 根据几何体的三视图,得出该几何体是一半圆柱体与一半圆锥体的组合体,根据图中数据求出它的体积.

解答 解:根据几何体的三视图,得;
该几何体是一底面半径为1,高为4的半圆柱体,
与一底面半径为1,高为2的半圆锥体的组合体;
该几何体的体积为
V几何体=V半圆柱体+V半圆锥体
=$\frac{1}{2}$•π12•4+$\frac{1}{3}$•$\frac{1}{2}$π12•2
=$\frac{7π}{3}$.
故答案为:$\frac{7π}{3}$.

点评 本题考查的知识点是由三视图几何体的求体积,其中根据已知分析出几何体的形状是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.数列{an}的通项公式an=3n,其前n项和为Sn,则数列{$\frac{1}{{S}_{n}}$}的前100项和为(  )
A.$\frac{33}{50}$B.$\frac{2}{3}$C.$\frac{200}{303}$D.$\frac{31}{50}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.z=$\frac{(1-4i)(1+i)+2+4i}{3+4i}$,$\overlinez$是z的共轭复数,复数$\frac{1+ai}{2-i}$为纯虚数(a为实数),z1的实部为a,虚部为z的模,z及z1在复平面上的对应点分别为A,B,
(1)求向量$\overrightarrow{AB}$对应的复数;
(2)复数w满足|W-Z|=4,求|W|的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个顶点为A(2,0),离心率为$\frac{\sqrt{2}}{2}$.直线y=k(x-1)与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程;
(2)设M(x1,y1),N(x2,y2),若|x1-x2|=$\frac{2\sqrt{10}}{3}$,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.过定点P(0,2)作直线l,使l与曲线y2=4x有且仅有1个公共点,这样的直线l共有(  )
A.1条B.2条C.3条D.4条

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(cosα,sinα),设$\overrightarrow{c}$=$\overrightarrow{a}$-t$\overrightarrow{b}$(t为实数).
(1)t=1 时,若$\overrightarrow{c}$∥$\overrightarrow{b}$,求2cos2α-sin2α的值;
(2)若α=$\frac{π}{4}$,求|$\overrightarrow{c}$|的最小值,并求出此时向量$\overrightarrow{a}$在$\overrightarrow{c}$方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知椭圆的长轴长是焦距的2倍,则椭圆的离心率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),以抛物线y2=8x的焦点为顶点,且离心率为$\frac{1}{2}$
(1)求椭圆E的方程;
(2)已知A、B为椭圆上的点,且直线AB垂直于x轴,直线l:x=4与x轴交于点N,直线AF与BN交于点M.
(ⅰ)求证:点M恒在椭圆C上; 
(ⅱ)求△AMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知m=0.91.1,n=1.10.9,p=log0.91.1,则m、n、p的大小关系(  )
A.m<n<p.B.m<p<nC.p<m<nD.p<n<m

查看答案和解析>>

同步练习册答案