精英家教网 > 高中数学 > 题目详情

(2014•镇江二模)已知不等式|a﹣2|≤x2+2y2+3z2对满足x+y+z=1的一切实数x,y,z都成立,求实数a的取值范围.

 

≤a≤

【解析】

试题分析:不等式|a﹣2|≤x2+2y2+3z2恒成立,只要|a﹣2||≤(x2+2y2+3z2)min,利用柯西不等式求出x2+2y2+3z2的最小值,再解关于a的绝对值不等式即可.

【解析】
因为已知x,y,z是实数,且x+y+z=1,

根据柯西不等式(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2

故有(x2+2y2+3z2)(1++)≥(x+y+z)2

故x2+2y2+3z2≥,当且仅当x=,y=,z=时取等号,

∵不等式|a﹣2|≤x2+2y2+3z2对满足x+y+z=1的一切实数x,y,z都成立,

∴|a﹣2|≤

≤a≤

练习册系列答案
相关习题

科目:高中数学 来源:[同步]2014年新人教A版选修4-6 1.1整除练习卷(解析版) 题型:填空题

(2013•宝山区一模)我们用记号“|”表示两个正整数间的整除关系,如3|12表示3整除12.试类比课本中不等关系的基本性质,写出整除关系的两个性质.① ;② .

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 4.1数学归纳法练习卷(解析版) 题型:选择题

证明1++…+(n∈N*),假设n=k时成立,当n=k+1时,左端增加的项数是( )

A.1项 B.k﹣1项 C.k项 D.2k项

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 3.2一般形式柯西不等式练习卷(解析版) 题型:填空题

(2014•辽宁)对于c>0,当非零实数a,b满足4a2﹣2ab+b2﹣c=0且使|2a+b|最大时,++的最小值为 .

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 3.2一般形式柯西不等式练习卷(解析版) 题型:选择题

函数( )

A.6 B.2 C.5 D.2

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 3.1二维形式柯西不等式练习卷(解析版) 题型:填空题

(2014•长安区三模)己知x,y∈(0,+∞),若+3<k恒成立,利用柯西不等式可求得实数k的取值范围是 .

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 3.1二维形式柯西不等式练习卷(解析版) 题型:选择题

已知a+b=1,则以下成立的是( )

A.a2+b2>1 B.a2+b2=1 C.a2+b2<1 D.a2b2=1

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 2.3反证法与放缩法练习卷(解析版) 题型:选择题

用反证法证明“方程ax2+bx+c=0(a≠0)至多有两个解”的假设中,正确的是( )

A.至多有一个解 B.有且只有两个解

C.至少有三个解 D.至少有两个解

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-5 2.1比较法练习卷(解析版) 题型:选择题

若不等式(﹣1)na<2+对任意n∈N*恒成立,则实数a的取值范围是( )

A.[﹣2,) B.(﹣2,) C.[﹣3,) D.(﹣3,

 

查看答案和解析>>

同步练习册答案