精英家教网 > 高中数学 > 题目详情
2.已知全集为R,集合M={x|5x≥1},N={x|$\frac{\sqrt{x-2}}{x-3}$≤0},则M∩CRN=(  )
A.{x|x≤0}B.{x|0≤x<2或x>3}C.{x|2≤x≤3}D.{x|0≤x<2或x≥3}

分析 将集合M中的不等式变形,利用指数函数的性质求出x的范围,确定出集合M,根据不等式求出集合N,找出不属于N的部分,确定出N的补集,找出N补集与M的公共元素,即可确定出所求的集合.

解答 解:全集为R,集合M={x|5x≥1},
∴5x≥1=50
解得x≥0,
∴M={x|x≥0},
N={x|$\frac{\sqrt{x-2}}{x-3}$≤0},
∴$\left\{\begin{array}{l}{x-2≥0}\\{x-3<0}\end{array}\right.$,
∴N={x|2≤x<3},
∴CRN={x|x<2,或x≥3},
∴M∩CRN={x|0≤x<2,或x≥3},
故选:D.

点评 此题属于以其他不等式的解法为平台,考查了交、并、补集的混合运算,弄清交、并、补集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知x、y∈[a,b],求x+y的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求证:sin(x+$\frac{π}{3}$)-$\sqrt{3}$cos($\frac{2π}{3}$-x)+2sin(x-$\frac{π}{3}$)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设n≥2,若an是(1+x)n展开式中含x2的系数,则$\lim_{n→∞}$(${\frac{1}{a_2}$+$\frac{1}{a_3}$+…+$\frac{1}{a_n}})$)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知y=f(x)是偶函数,而y=f(x+1)是奇函数,且对任意0≤x≤1,都有f′(x)≥0,成立,则a=f(2010),b=f($\frac{5}{4}$),c=-f($\frac{1}{2}$)的大小关系是(  )
A.a≤b≤cB.c≤b≤aC.b≤c≤aD.a≤c≤b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设a>0,b>0,且a+b=1,则$\frac{1}{a+1}$+$\frac{1}{b+1}$的最小值为$\frac{4}{3}$,此时a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.若x∈[2,4],求函数$f(x)={({{{log}_{\frac{1}{4}}}x})^2}-{log_{\frac{1}{4}}}$x+5的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.证明:tan($\frac{3π}{2}$-A)-$\frac{co{t}^{2}A•si{n}^{2}(A-\frac{7π}{2})}{tan(\frac{π}{2}-A)+cosA}$=cosA.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)满足f(x)+2f(-x)=5x+1,则f(x)=-5x-1.

查看答案和解析>>

同步练习册答案