精英家教网 > 高中数学 > 题目详情
8.下列函数中,图象关于点($\frac{π}{3}$,0)对称的是(  )
A.y=sin(x+$\frac{π}{3}$)B.y=cos(x-$\frac{π}{3}$)C.y=sin(x+$\frac{π}{6}$)D.y=tan(x+$\frac{π}{6}$)

分析 把点($\frac{π}{3}$,0)代入各个选项,检验可得结论.

解答 解:∵当x=$\frac{π}{3}$时,f(x)=sin(x+$\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$,故排除A;
当x=$\frac{π}{3}$时,f(x)=cos(x-$\frac{π}{3}$)=1,故排除B;
当x=$\frac{π}{3}$时,f(x)=sin(x+$\frac{π}{6}$)=1,故排除C;
当x=$\frac{π}{3}$时,f(x)=tan(x+$\frac{π}{6}$)=tan$\frac{π}{2}$,无意义,故它的图象关于点($\frac{π}{3}$,0)对称,
故选:D.

点评 本题主要考查三角函数的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,圆O的半径为$\sqrt{2}$,A,B为圆O上的两个定点,且∠AOB=90°,P为优弧AB的中点,设C,D(C在D左侧)为优弧AB上的两个不同的动点,且CD∥BA,记∠POD=α,四边形ABCD的面积为S.
(1)求S关于α的函数关系;
(2)当α为何值时,S取得最大值?并求出S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.直线x=my+1与双曲线C:x2-y2=1恰有一个交点,则m的取值集合是{0,-1,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.画出不等式组$\left\{\begin{array}{l}{x+y-1≤0}\\{x-y-1<0}\\{\;}\end{array}\right.$ 表示的平面区域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知实数a,b满足2a2-5lna-b=0,c∈R,则$\sqrt{(a-c)^{2}+(b+c)^{2}}$的最小值为$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某校高一(1)班的课外生物研究小组通过互联网上获知,某种珍稀植物的种子在一定条件下发芽成功率为$\frac{1}{3}$,小组依据网上介绍的方法分小组进行验证性实验(每次实验相互独立).
(1)第一小组做了5种子的发芽实验(每次均种下一粒种子),求5次实验至少有3次成功的概率;
(2)第二小组在老师带领下做了若干次发芽实验(每次均种下一粒种子),如果在一次实验中,种子发芽成功则停止实验,否则将继续进行下去,直到种子发芽成功为止,而该小组能提供实验的种子只有n颗(n≥5,n∈N+),求第二个小组所做的实验次数ξ的概率分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设等差数列{an}的各项均不为0,其前n项和为Sn,an2=S2n-1
(1)求an,Sn
(2)设bn=Sn-1,令Tn=$\frac{1}{{b}_{2}}$+$\frac{1}{{b}_{3}}$+…+$\frac{1}{{b}_{n}}$,求Tn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如果x∈A且x∈B,那么(  )
A.{x}是集合A与B的交集B.x=A∩B
C.{x}?A,{x}?BD.以上均不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.数列{an}中,${a_1}=1{,_{\;}}{a_n}+{a_{n+1}}={(-1)^n}$(n∈N*).则数列{an}的前6项和S6=(  )
A.-3B.3C.-4D.4

查看答案和解析>>

同步练习册答案