【题目】甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示:
![]()
(Ⅰ)请填写下表(写出计算过程):
![]()
(Ⅱ)从下列三个不同的角度对这次测试结果进行分析;
①从平均数和方差相结合看(分析谁的成绩更稳定);
②从平均数和命中9环及9环以上的次数相结合看(分析谁的成绩好些);
③从折线图上两人射击命中环数的走势看(分析谁更有潜力)
【答案】(Ⅰ)见解析;(Ⅱ)见解析.
【解析】试题分析:(Ⅰ)由折线图,求出甲设计
次中靶环数和乙射击
次中靶环数,由此能求出结果;(Ⅱ)①由平均数相同,
,知甲成绩比乙稳定;②由平均数相同,命中9环及9环以上的次数甲比乙少,知乙成绩比甲好些;③乙处于上升势头,从第四次以后就没有比甲少的情况发生,乙较有潜力.
试题解析:由折线图,知
甲射击10次中靶环数分别为:9,5,7,8,7,6,8,6,7,7.
将它们由小到大重排为:5,6,6,7,7,7,7,8,8,9.
乙射击10次中靶环数分别为:2,4,6,8,7,7,8,9,9,10.也将它们由小到大重排为:2,4,6,7,7,8,8,9,9,10.
(Ⅰ)
(环),
(环)
![]()
![]()
![]()
![]()
根据以上的分析与计算填表如下:
![]()
(Ⅱ)①∵平均数相同,
,
∴甲成绩比乙稳定.
②∵平均数相同,命中9环及9环以上的次数甲比乙少,
∴乙成绩比甲好些.
③甲成绩在平均数上下波动;而乙处于上升势头,从第四次以后就没有比甲少的情况发生,乙较有潜力.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知曲线
的参数方程为
(
,
为参数).以坐标原点
为极点,
轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线
的极坐标方程为
.
(1)当
时,求曲线
上的点到直线
的距离的最大值;
(2)若曲线
上的所有点都在直线
的下方,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】质检部门对某工厂甲、乙两个车间生产的12个零件质量进行检测.甲、乙两个车间的零件质量(单位:克)分布的茎叶图如图所示.零件质量不超过20克的为合格.
![]()
(1)从甲、乙两车间分别随机抽取2个零件,求甲车间至少一个零件合格且乙车间至少一个零件合格的概率;
(2)质检部门从甲车间8个零件中随机抽取4件进行检测,若至少2件合格,检测即可通过,若至少3 件合格,检测即为良好,求甲车间在这次检测通过的条件下,获得检测良好的概率;
(3)若从甲、乙两车间12个零件中随机抽取2个零件,用
表示乙车间的零件个数,求
的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某食品的保鲜时间y(单位:小时)与储存温度x(单位:
)满足函数关系
(k,m为常数).若该食品在0
的保鲜时间是64小时,在18
的保鲜时间是16小时,则该食品在36
的保鲜时间是( )
A.4小时B.8小时C.16小时D.32小时
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】探究函数
,
上的最小值,并确定取得最小值时
的值,列表如下:
| … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
| … | 14 | 7 | 5.34 | 5.11 | 5.01 | 5 | 5.01 | 5.04 | 5.08 | 5.67 | 7 | 8.6 | 12.14 | … |
(1)观察表中
值随
值变化趋势特点,请你直接写出函数
,
的单调区间,并指出当
取何值时函数的最小值为多少;
(2)用单调性定义证明函数
在
上的单调性.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
,抛物线
的焦点均在
轴上,
的中心和
的顶点均为原点
,从
,
上分别取两个点,将其坐标记录于下表中:
| 3 | -2 | 4 |
|
|
| 0 | -4 |
|
(1)求
的标准方程;
(2)若直线
与椭圆
交于不同的两点
,且线段
的垂直平分线过定点
,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com