精英家教网 > 高中数学 > 题目详情
19.在△ABC中,角A,B,C所对的边分别为a,b,c,已知tanA=$\frac{2sinC}{1-2cosC}$,b=1.
(1)求a的值(2)若c=$\sqrt{7}$,求△ABC外接圆的面积.

分析 (1)由同角的三角函数的关系和两角和的正弦公式可得sinA=2sinB,再由正弦定理可得a=2b,问题得以解决;
(2)先由余弦定理求出cosC,再求出C的值,再由正弦定理求出外接圆的半径,问题得以解决.

解答 解:(1)由已知得$\frac{sinA}{cosA}$=$\frac{2sinC}{1-2cosC}$,
即sinA(1-2cosC)=2cosAsinC,
∴sinA=2sinAcosC+2cosAsinC=2sin(A+C),
∵A+C=π-B,
∴sinA=2sinB,
由正弦定理得a=2b,
∵b=1,
∴a=2;
(2)由余弦定理得c2=a2+b2+-2abcosC,
∴($\sqrt{7}$)2=12+22-2×1×2×cosC,
即cosC=-$\frac{1}{2}$,
∵0<C<π,
∴C=$\frac{2π}{3}$,
设△ABC外接圆的半径为R,则2R=$\frac{c}{sinC}$=$\frac{\sqrt{7}}{\frac{\sqrt{3}}{2}}$,
解得R=$\frac{\sqrt{21}}{3}$,
∴△ABC外接圆的面积πR2=$\frac{7π}{3}$.

点评 本题考查了正弦定理和余弦定理以及三角函数的化简,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知A,B是单位圆O上的两个动点,|AB|=$\sqrt{2}$,$\overrightarrow{OC}$=2$\overrightarrow{OA}$-$\overrightarrow{OB}$.若M是线段AB的中点,则$\overrightarrow{OC}$•$\overrightarrow{OM}$的值为(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.甲,乙两组各4名同学参加学校组织的“抗日战争历史知识知多少”抢答比赛,他们答对的题目个数用茎叶图表示,如图,中间一列的数字表示答对题目个数的十位数,两边的数字表示答对题目个数的个位数.
(1)求甲组同学答对题目个数的平均数和方差;
(2)分别从甲,乙两组中各抽取一名同学,求这两名同学答对题目个数之和为20的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.一般吧数字出现的规律满足如图的模型称为蛇形模型:数字1出现在第1行,数字2,3出现在第2行;数字6,5,4(从左到右)出现在第3行;数字7,8,9,10出现在第4行,以此类推,第21行从左到右的第4个数字应是228.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知α为第四象限角,则$\frac{α}{2}$在第几象限(  )
A.二、四B.三、四C.二、三D.一、四

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\sqrt{2}sinωxcosωx+\sqrt{2}{cos^2}ωx-\frac{{\sqrt{2}}}{2}({ω>0})$,若x=$\frac{π}{4}$是函数f(x)的一条对称轴,则实数ω的值可以是(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某市组织一次高三调研考试,考试后统计的数学成绩服从正态分布,其密度函数为f(x)=$\frac{1}{10\sqrt{2π}}$e${\;}^{-\frac{(x-80)^{2}}{200}}$,则下列命题中不正确的是(  )
A.该市在这次考试的数学平均成绩为80分
B.分数在120分以上的人数与分数在60分以下的人数相同
C.分数在110分以上的人数与分数在50分以下的人数相同
D.该市这次考试的数学成绩标准差为10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知复数$z=\frac{1+i}{1-i}$,其中i是虚数单位,则z2017的虚部为(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数f(x)=x2,则f′(1)=2.

查看答案和解析>>

同步练习册答案