精英家教网 > 高中数学 > 题目详情
1.如图所示,在梯形ABCD中,∠B=$\frac{π}{2}$,$AB=\sqrt{2}$,BC=2,点E为AB的中点,若向量$\overrightarrow{CD}$在向量$\overrightarrow{BC}$上的投影为$-\frac{1}{2}$,则$\overrightarrow{CE}•\overrightarrow{BD}$=(  )
A.-2B.$-\frac{1}{2}$C.0D.$\sqrt{2}$

分析 以B为原点,BC为x轴,AB为y轴建系,设向量$\overrightarrow{CD}$与向量$\overrightarrow{BC}$的夹角为θ,转化求解相关向量,然后求解数量积即可.

解答 解:以B为原点,BC为x轴,AB为y轴建系如图,

∵$AB=\sqrt{2}$,BC=2,∴$A({0,\sqrt{2}})$,B(0,0),C(2,0),D的纵坐标为$\sqrt{2}$,
∵点E为AB的中点,∴$E({0,\frac{{\sqrt{2}}}{2}})$,若向量$\overrightarrow{CD}$在向量$\overrightarrow{BC}$上的投影为$-\frac{1}{2}$,设向量$\overrightarrow{CD}$与向量$\overrightarrow{BC}$的夹角为θ,所以$|{\overrightarrow{CD}}|cosθ=-\frac{1}{2}$,过D作DF⊥BC,垂足为F,在Rt△DFC中,$cos({π-θ})=\frac{{|{\overrightarrow{FC}}|}}{{|{\overrightarrow{CD}}|}}$,所以$|{\overrightarrow{CF}}|=\frac{1}{2}$,所以$D({\frac{3}{2},\sqrt{2}})$,所以$\overrightarrow{CE}=({-2,\frac{{\sqrt{2}}}{2}})$,$\overrightarrow{BD}=({\frac{3}{2},\sqrt{2}})$,所以$\overrightarrow{CE}•\overrightarrow{BD}=-3+1=-2$.
故选:A.

点评 本题考查向量的数量积的求法,坐标法的应用,考查数形结合以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知a+b=2,b>0,当$\frac{1}{2|a|}$+$\frac{|a|}{b}$取最小值时,实数a的值是-2或$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数$f(x)=\left\{\begin{array}{l}{lo{g_2}({{x^2}-2ax+3a}),x≥1}\\{1-{x^2},x<1}\end{array}$的值域为R,则常数a的取值范围是(  )
A.(-1,1]∪[2,3)B.(-∞,1]∪[2,+∞)C.(-1,1)∪[2,3)D.(-∞,0]{1}∪[2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知圆心为(2,3)的圆C上的点到直线x+y-3=0的最短距离为$\sqrt{2}$-1.
(1)求圆C的方程;
(2)过点N(-1,0)的直线l与圆C交于P,Q两点,且$\overrightarrow{OP}$•$\overrightarrow{OQ}$=12,其中O为坐标原点,求△OPQ的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=xlnx+(1-x)ln(1-x),x∈(0,1).
(1)求f(x)的最小值;
(2)若a+b+c=1,a,b,c∈(0,1).求证:alna+blnb+clnc≥(a-2)ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.2017年3月29日,中国自主研制系全球最大水陆两栖飞机AG600将于2017年5月计划首飞.AG600飞机的用途很多,最主要的是森林灭火、水上救援、物资运输、海洋探测.根据灾情监测情报部门监测得知某个时间段全国有10起灾情,其中森林灭火2起,水上救援3起,物资运输5起.现从10起灾情中任意选取3起,
(1)求三种类型灾情中各取到1个的概率;
(2)设X表示取到的森林灭火的数目,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设数列{an}的前n项的和为Sn,且an=4$+(-\frac{1}{2})^{n-1}$,若对于任意的n∈N*,都有1≤x(Sn-4n)≤3恒成立,则实数x的取值范围是[1,6].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}是等差数列,Sn是其前n项和.若a4+a5+a6=21,则S9=63.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,有一块半径为2的半圆形钢板,计划剪裁成等腰梯形ABCD的形状,它的下底AB是⊙O的直径,上底CD的端点在圆周上.设∠BAD=α
(Ⅰ)用α表示AD和CD的长;
(Ⅱ)写出梯形周长l关于角α的函数解析式,并求这个梯形周长的最大值.

查看答案和解析>>

同步练习册答案