设
是公差大于零的等差数列,已知
,
.
(Ⅰ)求
的通项公式;
(Ⅱ)设
是以函数
的最小正周期为首项,以
为公比的等比数列,求数列
的前
项和
.
科目:高中数学 来源: 题型:解答题
设数列{an}的各项都是正数,且对任意n∈N*,都有
+…+
=
,记Sn为数列{an}的前n项和.
(1)求数列{an}的通项公式;
(2)若bn=3n+(-1)n-1λ·2an(λ为非零常数,n∈N*),问是否存在整数λ,使得对任意n∈N*,都有bn+1>bn.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设
是数列
的前
项和,对任意
都有
成立, (其中
、
、
是常数).
(1)当
,
,
时,求
;
(2)当
,
,
时,
①若
,
,求数列
的通项公式;
②设数列
中任意(不同)两项之和仍是该数列中的一项,则称该数列是“
数列”.
如果
,试问:是否存在数列
为“
数列”,使得对任意
,都有
,且
.若存在,求数列
的首项
的所
有取值构成的集合;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com