精英家教网 > 高中数学 > 题目详情
19.已知等比数列{an}的前4项和S4=5,且4a1$,\;\frac{3}{2}{a_2}\;,\;{a_2}$成等差数列.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设{bn}是首项为2,公差为-a1的等差数列,其前n项和为Tn,求满足Tn-1>0的最大正整数n.

分析 (Ⅰ)通过$4{a_1}\;,\;\frac{3}{2}{a_2}\;,\;{a_2}$成等差数列可得公比q=2,利用${S_4}=\frac{{{a_1}(1-{2^4})}}{1-2}=5$得${a_1}=\frac{1}{3}$,进而可得结论;
(Ⅱ)通过(Ⅰ)得公差,进而可得通项及前n项和的表达式,解不等式Tn-1>0即可.

解答 解:(Ⅰ)根据题意,设{an}的公比为q,
∵$4{a_1}\;,\;\frac{3}{2}{a_2}\;,\;{a_2}$成等差数列,
∴4a1+a2=3a2
整理得2a1=a2,即2a1=a1q,解得q=2.
又${S_4}=\frac{{{a_1}(1-{2^4})}}{1-2}=5$,解得${a_1}=\frac{1}{3}$.
∴${a_n}=\frac{1}{3}×{2^{n-1}}$.
(Ⅱ)由(Ⅰ)得-a1=$-\frac{1}{3}$,
∴${b_n}=2+(n-1)(-\frac{1}{3})=\frac{7-n}{3}$.
Tn=$\frac{{2+\frac{7-n}{3}}}{2}×n=\frac{(13-n)n}{6}$,
又∵Tn-1>0,∴$\frac{[13-(n-1)](n-1)}{6}>0$,
整理得(n-1)(n-14)<0,
解得1<n<14.
故满足Tn-1>0的最大正整数为13.

点评 本题考查等比数列的通项及求和等知识,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)左右顶点为A1,A2,左右焦点为F1,F2,P为双曲线C上异于顶点的一动点,直线PA1斜率为k1,直线PA2斜率为k2,且k1k2=1,又△PF1F2内切圆与x轴切于点(1,0),则双曲线方程为x2-y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,以椭圆C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与椭圆C交于点M与点N.
(1)求椭圆C的方程;
(2)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求|OR|+|OS|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,△ABC的顶点都在圆O上,点P在BC的延长线上,且PA与圆O切于点A.
(1)若∠ACB=70°,求∠BAP的度数;
(2)若$\frac{AC}{AB}$=$\frac{2}{5}$,求$\frac{PC}{PB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,三棱柱ABC-DEF的侧面BEFC是边长为1的正方形,侧面BEFC⊥侧面ADEB,AB=4,∠DEB=60°,G是DE的中点.
(Ⅰ)求证:CE∥平面AGF;
(Ⅱ)求证:GB⊥平面BEFC;
(Ⅲ)在线段BC上是否存在一点P,使二面角P-GE-B为45°,若存在,求BP的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.某校开展绘画比赛,9位评委为参赛作品A给出的分数如茎叶图所示.记分员在去掉一个最高分和一个最低分后,算得平均分为91,但复核员在复核时,发现有一个数字(茎叶图中的x)无法看清.若记分员计算无误,则数字x应该是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设函数f(x)=$\left\{\begin{array}{l}-2{x^2}+1(x≥1)\\ lo{g_2}(1-x)(x<1)\end{array}\right.$,则f(f(4))=5;若f(a)=-1,则a=1或$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知边长为1的等边三角形ABC与正方形ABDE有一公共边AB,二面角C-AB-D的余弦值为$\frac{{\sqrt{3}}}{3}$,若A、B、C、D、E在同一球面上,则此球的体积为(  )
A.B.$\frac{{8\sqrt{2}}}{3}$πC.$\sqrt{2}$πD.$\frac{{\sqrt{2}}}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知圆M:(x+2)2+y2=32及定点N(2,0),点P是圆M上的动点,点G在MP上,且满足|GP|=|GN|,G点的轨迹为曲线C.
(1)求曲线C的方程;
(2)设Q点是曲线C上异于曲线C与x轴交点的任意一点,试问在x轴上是否存在两个定点A,B使直线QA,QB的斜率之积为定值?若存在,求出所有符合条件的两个定点的坐标及定值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案