【题目】若函数
,且
是
的导函数,则
( )
A. 24 B. -24 C. 10 D. -10
科目:高中数学 来源: 题型:
【题目】省环保厅对
、
、
三个城市同时进行了多天的空气质量监测,测得三个城市空气质量为优或良的数据共有180个,三城市各自空气质量为优或良的数据个数如下表所示:
|
|
| |
优(个) | 28 |
|
|
良(个) | 32 | 30 |
|
已知在这180个数据中随机抽取一个,恰好抽到记录
城市空气质量为优的数据的概率为0.2.
(1)现按城市用分层抽样的方法,从上述180个数据中抽取30个进行后续分析,求在
城中应抽取的数据的个数;
(2)已知
,
,求在
城中空气质量为优的天数大于空气质量为良的天数的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx﹣a(x﹣1),其中a为实数.
(Ⅰ)讨论并求出f(x)的极值;
(Ⅱ)在a<1时,是否存在m>1,使得对任意的x∈(1,m)恒有f(x)>0,并说明理由;
(Ⅲ) 确定a的可能取值,使得存在n>1,对任意的x∈(1,n),恒有|f(x)|<(x﹣1)2 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设事件A表示“关于
的一元二次方程
有实根”,其中
,
为实常数.
(Ⅰ)若
为区间[0,5]上的整数值随机数,
为区间[0,2]上的整数值随机数,求事件A发生的概率;
(Ⅱ)若
为区间[0,5]上的均匀随机数,
为区间[0,2]上的均匀随机数,求事件A发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某地有三家工厂,分别位于矩形ABCD的顶点A,B以及CD的中点P处,已知AB=20km,CB=10km,为了处理三家工厂的污水,现要在矩形ABCD内(含边界),且与A,B等距离的一点O处建造一个污水处理厂,并铺设排污管道AO,BO,OP,设排污管道的总长为
km.
![]()
(I)设
,将
表示成
的函数关系式;
(II)确定污水处理厂的位置,使三条排污管道的总长度最短,并求出最短值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义域为R的奇函数f(x)满足f(4﹣x)+f(x)=0,当﹣2<x<0时,f(x)=2x , 则f(log220)=( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
,g(x)=
,若函数y=f(g(x))+a有三个不同的零点x1,x2,x3(其中x1<x2<x3),则2g(x1)+g(x2)+g(x3)的取值范围为______.
【答案】![]()
【解析】
首先研究函数
和函数
的性质,然后结合韦达定理和函数的性质求解2g(x1)+g(x2)+g(x3)的取值范围即可.
由题意可知:
,
将对勾函数
的图象向右平移一个单位,再向上平移一个单位即可得到函数
的图象,其图象如图所示:
![]()
由
可得
,
据此可知
在区间
上单调递增,在区间
上单调递减,
绘制函数图象如图所示:
![]()
则
的最大值为
,
,
函数y=f(g(x))+a有三个不同的零点,则
,
令
,则
,
整理可得:
,由韦达定理有:
.
满足题意时,应有:
,
,
故
.
【点睛】
本题主要考查导数研究函数的性质,等价转化的数学思想,复合函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.
【题型】填空题
【结束】
17
【题目】已知等比数列{
}的前n项和为
,且满足2
=
+m(m∈R).
(Ⅰ)求数列{
}的通项公式;
(Ⅱ)若数列{
}满足
,求数列{
}的前n项和
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=alnx+(﹣1)n
,其中n∈N* , a为常数.
(Ⅰ)当n=2,且a>0时,判断函数f(x)是否存在极值,若存在,求出极值点;若不存在,说明理由;
(Ⅱ)若a=1,对任意的正整数n,当x≥1时,求证:f(x+1)≤x.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com