精英家教网 > 高中数学 > 题目详情
12.若x∈(1,e),a=ln x,b=(ln x)2,c=ln(ln x),则a,b,c的大小关系为(  )
A.c>b>aB.b>c>aC.a>b>cD.b>a>c

分析 根据对数函数的单调性的性质进行求解比较即可.

解答 解:∵x∈(1,e),a=ln x,∴a∈(0,1);
b=(ln x2<ln x=a
c=ln(ln x)<0,
abc
故选:C.

点评 本题主要考查函数值的大小比较,利用对数函数的单调性是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知点A(1,-1),B(5,-3),C(4,-5),则表示△ABC的边界及其内部的约束条件是$\left\{\begin{array}{l}{x+2y-1≥0}\\{2x-y-13≤0}\\{4x+3y-1≤0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)=$\left\{\begin{array}{l}{x+{3}^{x}(x≤0)}\\{\frac{1}{3}{x}^{3}-4x+a(x>0)}\end{array}\right.$在定义域上只有一个零点,则实数a的取值范围是(  )
A.a>$\frac{16}{3}$B.a<$\frac{16}{3}$C.a≥$\frac{16}{3}$D.a≤$\frac{16}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.$\frac{{x}^{2}}{a}$+$\frac{{y}^{2}}{b}$=1(a,b∈{1,2,3,4,…,100})的曲线中,所有圆面积的和等于5050π,离心率最小的椭圆方程为$\frac{{x}^{2}}{100}+\frac{{y}^{2}}{99}=1$或$\frac{{x}^{2}}{99}+\frac{{y}^{2}}{100}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,菱形ABCD的边长为2,∠A=60°,M为DC的中点,则$\overrightarrow{AM}$•$\overrightarrow{AB}$的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知F1,F2是双曲线的两个焦点.且|F1F2|=10,过F2的直线交双曲线的一支于A,B两点.若|AB|=5,△AF1B的周长等于26时,求此双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{3}x|(0<x≤9)}\\{-x+11(x>9)}\end{array}\right.$,若存在实数t使关于x的方程f(x)-t=0有三个不等实根x1,x2,x3,则这三个不等实根的积x1•x2•x3的取值范围是(  )
A.(0,9)B.(2,9)C.(9,11)D.(2,11)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.甲、乙两人玩猜数字游戏,先由甲任想一个数字,记为a,再由乙猜甲刚才想的数字,把乙猜的数字记为b,且a,b∈[0,2],若|a-b|≤1,则称“甲乙心有灵犀”,现任意找两个人玩这个游戏,求他们“心有灵犀”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.甲、乙两人相约在某天的7点至8点之间见面,双方共同约定早到者等候15分钟,若另一方仍未到,可自行离去,假设甲、乙两人在7点到8点的任意时间到达的概率是等可能的,求甲、乙两人约会成功的概率.

查看答案和解析>>

同步练习册答案