精英家教网 > 高中数学 > 题目详情
2.已知AB、CD为梯形ABCD的底,对角线AC、BD的交点为O,且AB=8,CD=6,BD=15,求OB、OD的长.

分析 利用平行线分线段成比例,得出比例式,即可得出结论.

解答 解:如图所示,∵DC∥AB,
∴$\frac{DO}{OB}=\frac{DC}{AB}$=$\frac{6}{8}$=$\frac{3}{4}$,
∵BD=15,
∴DO=$\frac{45}{7}$,BO=$\frac{60}{7}$.

点评 本题考查平行线分线段成比例,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}({a+2}){x^2}+x({a∈R})$
(1)当a=0时,记f(x)图象上动点P处的切线斜率为k,求k的最小值;
(2)设函数$g(x)=e-\frac{e^x}{x}$(e为自然对数的底数),若对?x>0,f′(x)≥g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=lnx+$\frac{1}{x}$-3的极小值点为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知动点P到直线l:x=-1的距离等于它到圆C:x2+y2-4x+1=0的切线长(P到切点的距离),记动点P的轨迹为曲线E
(Ⅰ)求曲线E的方程;
(Ⅱ)点Q是直线l上的动点,过圆心C作QC的垂线交曲线E于A,B两点,设AB的中点为D,求$\frac{|QD|}{|AB|}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知曲线Γ上的点P到点F(0,1)的距离比它到x轴的距离多1.
(Ⅰ)求曲线Γ的方程;
(Ⅱ)记曲线Γ在x轴上方的部分为曲线C,过点M(0,2)任作一直线与曲线C相交于A、B两点,过点B作y轴的平行线与直线AO相交于点D(O为坐标原点),求点D的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=ex+ln(x+1)-ax.
(Ⅰ)当a=2时,证明:函数f(x)在定义域内单调递增;
(Ⅱ)当x≥0时,f(x)≥cosx恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设n∈N*,函数f(x)=$\frac{lnx}{{x}^{n}}$,函数g(x)=$\frac{{e}^{x}}{{x}^{n}}$(x>0).
(1)当n=1时,求函数y=f(x)的零点个数;
(2)若函数y=f(x)与函数y=g(x)的图象分别位于直线y=1的两侧,求n的取值集合A;
(3)对于?∈A,?x1,x2∈(0,+∞),求|f(x1)-g(x2)|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.判定直线4x+3y+13=0与圆x2+y2+6x-6y+14=0的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知x>-1,则函数y=$\frac{(x+10)(x+2)}{x+1}$的最小值为16.

查看答案和解析>>

同步练习册答案