分析 根据母线长为4,高为2,求出圆锥的底面半径.任意两条母线作截面,根据圆锥截图性质构造的三角形建立关系.利用基本不等式的性质求解.
解答 解:由题意:圆锥的母线长为4,高为2,
∴圆锥的底面半径r=$2\sqrt{3}$.
任意两条母线作截面(如图)ACS,
则CS=SA=4,△ACS是等腰三角形.
SD是△ACS的高,且是AC的中点.
设SD=h,AC=m,BC=n.
可得:h2+$\frac{1}{4}$m2=16
即4h2+m2=64,
那么:64=4h2+m2≥4mh,(当且仅当2h=m时取等号)
mh≤16.
则${S}_{△ACS}=\frac{1}{2}mh$=$\frac{1}{2}×16=8$
故答案为8.
点评 本题考查了圆锥截面图的面积的求法,构造等式关系.基本不等式的性质的思想.属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{3}$ | B. | $\sqrt{3}$ | C. | $\frac{2\sqrt{3}}{3}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若x2≥1,则x≥1 | B. | 若x≥1,则x2≥1 | C. | 若x>1,则x2>1 | D. | 若x<1,则x2<1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=sinx | B. | f(x)=cosx | C. | f(x)=-sin(4x+$\frac{π}{4}$) | D. | f(x)=sin(4x+$\frac{π}{4}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1” | |
| B. | “x=-1”是“x2-5x-6=0”的必要不充分条件 | |
| C. | 若“p或q”为真命题,则p,q中至少有一个为真命题 | |
| D. | 命题“若x=y,则cosx=cosy”的逆否命题为假命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com