精英家教网 > 高中数学 > 题目详情
10.如图所示,四棱锥A-BCDE,已知平面BCDE⊥平面ABC,BE⊥EC,DE∥BC,BC=2DE=6,AB=4$\sqrt{3}$,∠ABC=30°.
(1)求证:AC⊥BE;
(2)若∠BCE=45°,求三棱锥A-CDE的体积.

分析 (1)利用余弦定理计算AC,得出BC⊥AC,再利用面面垂直的性质得出AC⊥平面BCDE,故而AC⊥BE;
(2)过E作EF⊥BC,垂足为F,利用三角形知识求出EF,代入棱锥的体积公式计算即可.

解答 (1)证明:∵AB=4$\sqrt{3}$,BC=6,∠ABC=30°,
∴AC=$\sqrt{36+48-2×6×4\sqrt{3}×\frac{\sqrt{3}}{2}}$=2$\sqrt{3}$,
∴BC2+AC2=AB2,∴AC⊥BC,
又平面BCDE⊥平面ABC,平面BCDE∩平面ABC=BC,AC?平面ABC,
∴AC⊥平面BCDE,又BE?平面BCDE,
∴AC⊥BE.
(2)解:过E作EF⊥BC,垂足为F,
∵DE∥BC,∴EF⊥DE,
∵BE⊥EC,∠BCE=45°,∴△BCE是等腰直角三角形,
∴EF=$\frac{1}{2}$BC=3,
∴S△CDE=$\frac{1}{2}×DE×EF$=$\frac{9}{2}$,
∴VA-CDE=$\frac{1}{3}{S}_{△CDE}•AC$=$\frac{1}{3}×\frac{9}{2}×2\sqrt{3}$=3$\sqrt{3}$.

点评 本题考查了线面垂直的判定与性质,棱锥的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知f(x)=(1-a)lnx+$\frac{a}{2}$x2-x(a>0).
(Ⅰ)当a=3时,其曲线在(1,f(1))处的切线方程;
(Ⅱ)讨论f(x)的单调性;
(Ⅲ)若f(x)在(1,2)有零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设二次函数f(x)=ax2+bx+c(a≠0)中的a、b均为整数,且f(0)、f(1)均为奇数,则(  )
A.方程f(x)=0有两个不相等的整数根B.方程f(x)=0没有整数根
C.方程f(x)=0至少有一个整数根D.方程f(x)=0至多有一个整数根

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知△ABC的三个内角A,B,C的对应边分别为a,b,c,且${S_{△ABC}}=\frac{{\sqrt{3}}}{12}{a^2}$.则使得sin2B+sin2C=msinBsinC成立的实数m的取值范围是[2,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,四棱锥P-ABCD中,AD∥BC,AD⊥DC,AD=2BC=2,在侧面PAD中,PA=PD,E为侧棱PC上不同于端点的任意一点且PA⊥DE.
(1)证明:平面PAD⊥平面ABCD;
(2)若PA∥平面BDE,求$\frac{CE}{PE}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.四棱锥P-ABCD中,PD⊥面ABCD,底面ABCD是菱形,且PD=DA=2,∠CDA=60°,过点B作直线l∥PD,Q为直线l上一动点.
(1)求证:QP⊥AC;
(2)当二面角Q-AC-P的大小为120°时,求QB的长;
(3)在(2)的条件下,求三棱锥Q-ACP的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.《九章算术》“勾股”章有一题:“今有二人同立.甲行率七,乙行率三,乙东行,甲南行十步而斜东北与乙会,问甲乙各行几何?”大意是说:“已知甲、乙二人同时从同一地点出发,甲的速度为7,乙的速度为3,乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.甲、乙各走了多少步?”请问乙走的步数是(  )
A.$\frac{9}{2}$B.$\frac{15}{2}$C.$\frac{21}{2}$D.$\frac{49}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知P(x,y)为不等式组$\left\{{\begin{array}{l}{x+y≤4}\\{x-y≤0}\\{x-m≥0}\end{array}}\right.$表示的平面区域M内任意一点,若目标函数z=5x+3y的最大值等于平面区域M的面积,则m=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知命题p:?x∈(1,+∞),x3+16>8x,则命题p的否定为(  )
A.?x∈(1,+∞),x3+16≤8xB.?x∈(1,+∞),x3+16<8x
C.?x∈(1,+∞),x3+16≤8xD.?x∈(1,+∞),x3+16<8x

查看答案和解析>>

同步练习册答案