分析 (1)设各项都是正数的等比数列{bn}的公比为q,运用等比数列的通项公式,解方程可得q=2,即可得到所求通项公式;
(2)求得an+bn=4n-2+2n,运用数列的求和方法:分组求和,结合等差数列和等比数列的求和公式,计算即可得到所求和.
解答 解:(1)设各项都是正数的等比数列{bn}的公比为q,
由题意可得b1=2,b2+b3=12,
即有2q+2q2=12,解得q=2(-3舍去),
即有bn=2•2n-1=2n,
(2)an+bn=4n-2+2n,
前n项和Sn=(2+6+…+4n-2)+(2+4+…+2n)
=$\frac{1}{2}$(2+4n-2)n+$\frac{2(1-{2}^{n})}{1-2}$
=2n2+2n+1-2.
点评 本题考查等差数列和等比数列的通项公式和求和公式的运用,考查数列的求和方法:分组求和,考查运算能力,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 极大值为f(2)=5,极小值为f(3)=1,f(-1)=-3 | |
| B. | 极大值为f(2)=5,极小值为f(3)=f(0)=1 | |
| C. | 极大值为f(2)=5,极小值为f(3)=1 | |
| D. | 极大值为f(2)=5,极小值为f(0)=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1023 | B. | 1024 | C. | 1025 | D. | 1026 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=$\sqrt{x}$ | B. | y=$\frac{1}{x-1}$ | C. | y=log0.5x | D. | y=ex |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com