精英家教网 > 高中数学 > 题目详情
3.已知a、b、c为实常数,数列{xn}的通项xn=an2+bn+c,n∈N*,则“存在k∈N*,使得x100+k、x200+k、x300+k成等差数列”的一个必要条件是(  )
A.a≥0B.b≤0C.c=0D.a-2b+c=0

分析 由x100+k,x200+k,x300+k成等差数列,可得:2x200+k=x100+kx300+k,代入化简即可得出.

解答 解:存在k∈N*,使得x100+k、x200+k、x300+k成等差数列,可得:2[a(200+k)2+b(200+k)+c]=a(100+k)2+b(100+k)+c+a(300+k)2+b(300+k)+c,化为:a=0.
∴使得x100+k,x200+k,x300+k成等差数列的必要条件是a≥0.
故选:A.

点评 本题考查了等差数列的通项公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若集合A={x|x<5,x∈N},B={x|(x-2)(x-7)≤0},集合M=A∩B,则M的子集个数为(  )
A.4B.6C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ex+$\frac{a}{{e}^{x}}$(a∈R)是定义域为R的奇函数,其中e是自然对数的底数.
(1)求实数a的值;
(2)若存在x∈(0,+∞),使不等式f(x2+x)+f(2-tx)<0成立,求实数t的取值范围;
(3)若函数y=e2x+$\frac{1}{{e}^{2x}}$-2mf(x)在(m,+∞)上不存在最值,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=cos2x+$\sqrt{3}$sinxcosx(x∈R)
(1)求函数f(x)的最小正周期;
(2)当函数f(x)取得最大值时,求自变量x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,D是边BC的中点,|$\overrightarrow{AC}$|=3,|$\overrightarrow{AB}$|=2,则$\overrightarrow{AD}$•$\overrightarrow{BC}$=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知复数z=(2a+i)(1-bi)的实部为2,其中a,b为正实数,则4a+($\frac{1}{2}$)1-b的最小值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知三棱锥P-ABC,PA=BC=5,PB=AC=$\sqrt{34}$,PC=AB=$\sqrt{41}$,则此三棱锥的体积是160.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知:x2-6x-1=0,则x3-$\frac{1}{{x}^{3}}$=234.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等差数列{an}的前n项和为Sn,且满足S4=24,S7=63.
(1)求数列{an}的通项公式;
(2)若bn=2an,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案