精英家教网 > 高中数学 > 题目详情
2.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夹角为$\frac{π}{3}$的两个单位向量,非零向量$\overrightarrow{b}$=x$\overrightarrow{{e}_{1}}$+y$\overrightarrow{{e}_{2}}$,x,y∈R,若x+2y=2,则|$\overrightarrow{b}$|的最小值为1.

分析 计算${\overrightarrow{b}}^{2}$,将x=2-2y代入得到关于y的函数,求此函数的最小值.

解答 解:$\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}$=cos$\frac{π}{3}$=$\frac{1}{2}$.$\overrightarrow{b}$2=x2+y2+2xy$\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}$=x2+y2+xy.
∵x+2y=2,∴x=2-2y.
∴$\overrightarrow{b}$2=(2-2y)2+y2+(2-2y)y=3y2-6y+4=3(y-1)2+1.
∴当y=1时,$\overrightarrow{b}$2取得最小值1.
∴|$\overrightarrow{b}$|的最小值为1.
故答案为:1.

点评 本题考查了平面向量数量积的运算,二次函数的最值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.若方程E:$\frac{x^2}{1-m}-\frac{y^2}{m-2}$=1表示焦点在y轴上的双曲线,则实数m的取值范围为(  )
A.(1,2)B.(-∞,1)∪(2,+∞)C.(-∞,2)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.过点$P(-\sqrt{3},-1)$的直线l与圆x2+y2=1有公共点,则直线l的斜率的取值范围是(  )
A.$(0,\frac{{\sqrt{3}}}{3}]$B.$(0,\sqrt{3}]$C.$[0,\frac{{\sqrt{3}}}{3}]$D.$[0,\sqrt{3}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.函数f(x)=2$\sqrt{3}$sin(ωx+$\frac{π}{3}$)(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B,C为图象与x轴的交点,且△ABC为正三角形.
(Ⅰ)指出函数f(x)的值域;
(Ⅱ)求函数f(x)的解析式;
(Ⅲ)若f(x0)=$\frac{8\sqrt{3}}{5}$,且x0∈(-$\frac{10}{3}$,$\frac{2}{3}$),求f(x0+6)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$|\overrightarrow a|=4$,$|\overrightarrow b|=5$,$|\overrightarrow a+\overrightarrow b|=\sqrt{21}$,则$\overrightarrow a•\overrightarrow b$=(  )
A.-8B.-10C.10D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知a>0,b∈R,函数f(x)=4ax2-2bx-a+b的定义域为[0,1].
(Ⅰ)当a=1时,函数f(x)在定义域内有两个不同的零点,求b的取值范围;
(Ⅱ)记f(x)的最大值为M,证明:f(x)+M>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设$\overrightarrow{AB}$=(7,0),$\overrightarrow{BC}$=(0,3),则$\overrightarrow{AC}$•$\overrightarrow{BC}$等于(  )
A.0B.5C.7D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知锐角△ABC的三内角A,B,C所对的边分别是a,b,c,且2csinB=$\sqrt{3}$b.
(1)求角C的大小;
(2)若边c=1,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人受灾,5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元.距离陆丰市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组,并作出如下频率分布直方图(如图):
(I)小明向班级同学发出倡议,为该小区居民捐款.现从损失超过6000元的居民中随机抽出2户进行捐款援助,求这两户在同一分组的概率;
(Ⅱ)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如下表,在表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?
经济损失不超过4000元经济损失超过4000元合计
捐款超过500元30939         
捐款不超过500元5611
合计351550
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
附:临界值表参考公式:K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

查看答案和解析>>

同步练习册答案