| A. | (-1,6) | B. | (0,4) | C. | (0,6) | D. | (0,12) |
分析 以B为原点,BA所在直线为x轴建立坐标系,得到C的坐标,找出三角形为锐角三角形的A的位置,得到所求范围.
解答
解:以B为原点,BA所在直线为x轴建立坐标系,
∵∠B=$\frac{π}{3}$,|$\overrightarrow{AB}$-$\overrightarrow{AC}$|=|$\overrightarrow{BC}$|=2,
∴C(1,$\sqrt{3}$),设A(x,0)
∵△ABC是锐角三角形,
∴A+C=120°,∴30°<A<90°,
即A在如图的线段DE上(不与D,E重合),
∴1<x<4,
则$\overrightarrow{AB}•\overrightarrow{AC}$=x2-x=(x-$\frac{1}{2}$)2-$\frac{1}{4}$,
∴$\overrightarrow{AB}•\overrightarrow{AC}$的范围为(0,12).
故选:D
点评 本题考查了向量的几何意义以及利用坐标法求数量积范围;建立坐标系,利用坐标法是解决本题的关键.属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{9}{4}$ | B. | $\frac{3}{4}$ | C. | $\frac{9}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 对服务好评 | 对服务不满意 | 合计 | |
| 对商品好评 | |||
| 对商品不满意 | |||
| 合计 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com