精英家教网 > 高中数学 > 题目详情
在球面上有四点P、A、B、C,如果PA、PB、PC两两垂直,且PA=PB=PC=a,则这个球的表面积是(  )
A、3πa2
B、4πa2
C、5πa2
D、6πa2
考点:球的体积和表面积
专题:空间位置关系与距离
分析:PA、PB、PC可看作是正方体的一个顶点发出的三条棱,所以过空间四个点P、A、B、C的球面即为棱长为a的正方体的外接球,球的直径即是正方体的对角线,求出对角线长,即可求出球的表面积.
解答: 解:空间四个点P、A、B、C在同一球面上,PA、PB、PC两两垂直,且PA=PB=PC=a,
则PA、PB、PC可看作是正方体的一个顶点发出的三条棱,
所以过空间四个点P、A、B、C的球面即为棱长为a的正方体的外接球,球的直径即是正方体的对角线,长为
3
a,所以这个球面的面积S=4π(
3
2
a)2
=3πa2
故选:A.
点评:本题考查了球的内接体知识,球的表面积的求法,确定三棱锥与扩展的正方体的外接球是同一个,以及正方体的体对角线就是球的直径是解好本题的前提.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列四个命题正确的是(  )
①线性相关系数r越大,两个变量的线性相关性越强;反之,线性相关性越弱;
②残差平方和越小的模型,拟合的效果越好;
③用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好;
④随机误差e是衡量预报精确度的一个量,它的平均值为0.
A、①③B、②④C、①④D、②③

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数y=f(x)满足f′(x)>2x(x∈R),且f(1)=2,则不等式f(x)-x2>1的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
(1)平行于同一直线的两个平面平行;
(2)平行于同一平面的两条直线平行;
(3)垂直于同一直线的两条直线平行;
(4)垂直于同一平面的两条直线平行.
其中正确命题的个数是(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

在棱长为a的正方体ABCD-A1B1C1D1内任取一点P,则点P到点A的距离小等于a的概率为(  )
A、
2
2
B、
2
2
π
C、
1
6
D、
1
6
π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x),满足f(1)=3,f(-1)=-1,f(x)的最小值-1.
(Ⅰ)求f(x);
(Ⅱ)若函y=F(x),x∈R为奇函数,x>0时,F(x)=f(x),求函数y=F(x),x∈R的解析式;
(Ⅲ)设g(x)=f(-x)-λf(x)+1,若g(x)在[-1,1]上是减函数,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
x+2x2,x≤0
-1+lnx,x>0
的零点个数为(  )
A、3B、2C、1D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

两个物体在相距为423m的同一直线上从0s开始同时相向运动,物体A的运动速度v与时间t之间的关系为v=2t+1(v的单位是m/s,t的单位是s),物体B的运动速度v与时间t之间的关系为v=1+8t,.则它们相遇时,A物体的运动路程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的三个顶点分别是A(-1,5),B(5,5),C(6,-2),求△ABC的外接圆方程.

查看答案和解析>>

同步练习册答案