19£®ÒÑÖªÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;\;\;\;£¨a£¾b£¾0£©$£¬ÆäÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{3}$£¬µãFÊÇÆäÒ»¸ö½¹µã£¬P ÎªÍÖÔ²ÉÏÒ»µã£¬|PF|µÄ×îСֵΪ$\sqrt{3}-1$£¬Ö±Ïßl£ºy=m£¨x-1£©£®
£¨1£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì
£¨2£©Ö¤Ã÷£ºÖ±ÏßlÓëÍÖÔ²C×ÜÓÐÁ½¸ö²»Í¬µÄ½»µã£»
£¨3£©ÉèÖ±ÏßlÓëÍÖÔ²C½»ÓÚA¡¢BÁ½µã£¬ÊÇ·ñ´æÔÚʵÊým£¬Ê¹µÃÒÔÏß¶ÎABΪֱ¾¶µÄÔ²¹ý×ø±êÔ­µã£¿Èô´æÔÚ£¬ÇóʵÊýmµÄÖµ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÍÖÔ²µÄÀëÐÄÂʹ«Ê½£¬ÇóµÃa=$\sqrt{3}$c£¬a-c=$\sqrt{3}-1$£¬¼´¿ÉÇóµÃaºÍcµÄÖµ£¬Ôòb2=a2-c2=2£¬¼´¿ÉÇóµÃÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©½«Ö±Ïß·½³Ì´úÈëÍÖÔ²·½³Ì£¬ÓÉ¡÷£¾0£¬ÔòÖ±ÏßlÓëÍÖÔ²C×ÜÓÐÁ½¸ö²»Í¬µÄ½»µã£»
£¨3£©ÓÉΤ´ï¶¨Àí¼°ÏòÁ¿ÊýÁ¿»ýµÄ×ø±êÔËË㣬½âµÃ£ºm2=-6£¬¹Ê²»´æÔÚÕâÑùµÄʵÊý£¬Ê¹µÃÒÔÏß¶ÎABΪֱ¾¶µÄÔ²¹ý×ø±êÔ­µã£®

½â´ð ½â£º£¨1£©ÓÉÍÖÔ²µÄÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{{\sqrt{3}}}{3}$£¬Ôòa=$\sqrt{3}$c£¬
ÓÉ|PF|µÄ×îСֵΪ$\sqrt{3}-1$£¬¼´a-c=$\sqrt{3}-1$£¬½âµÃa=$\sqrt{3}$£¬c=1£¬
b2=a2-c2=2£¬
¡àÍÖÔ²µÄ±ê×¼·½³Ì£º$\frac{x^2}{3}+\frac{y^2}{2}=1$£»£¨4·Ö£©
£¨2£©Ö¤Ã÷£ºÓÉ$\left\{{\begin{array}{l}{\frac{x^2}{3}+\frac{y^2}{2}=1}\\{mx-y-m=0}\end{array}}\right.$£¬ÏûÈ¥y£¬ÕûÀíµÃ£¨3m2+2£©x2-6m2x+3m2-6=0
¡ß¡÷=£¨-6m2£©2-4£¨3m2+2£©£¨3m2-6£©=48m2+48£¾0£¬
¡à¶ÔÓÚm¡ÊR£¬Ö±ÏßlÓëÍÖÔ²C×ÜÓÐÁ½¸ö²»Í¬µÄ½»µã£»      £¨6·Ö£©
£¨3£©ÉèA¡¢BµÄ×ø±ê·Ö±ðΪ£¨x1£¬y1£©¡¢£¨x2£¬y2£©£¬
ÓÉ£¨2£©¿ÉÖª£º${x_1}+{x_2}=\frac{{6{m^2}}}{{3{m^2}+2}}$£¬${x_1}•{x_2}=\frac{{3{m^2}-6}}{{3{m^2}+2}}$£¬y1y2=m£¨x1-1£©•m£¨x2-1£©
=m2£¨x1x2-£¨x1+x2£©+1£©=$\frac{-4{m}^{2}}{3{m}^{2}+2}$£¬
¼ÙÉè´æÔÚʵÊým£¬Ôò$\overrightarrow{OA}•\overrightarrow{OB}=0$£¬Ôòx1x2+y1y2=0£¬
¿ÉµÃm2=-6£¬ËùÒÔ²»´æÔÚ£®   £¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì¼°¼òµ¥¼¸ºÎÐÔÖÊ£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬Î¤´ï¶¨Àí¼°ÏòÁ¿ÊýÁ¿»ýµÄ×ø±êÔËË㣬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÔĶÁÏÂÃæ³ÌÐò£¬µ±ÊäÈëxµÄֵΪ3ʱ£¬Êä³öyµÄֵΪ1.5£®£¨ÆäÖÐeΪ×ÔÈ»¶ÔÊýµÄµ×Êý£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®°Ñº¯Êýy=$\frac{1}{2}$sin2xµÄͼÏó¾­¹ý________±ä»¯£¬¿ÉÒԵõ½º¯Êýy=$\frac{1}{4}$sinxµÄͼÏ󣮣¨¡¡¡¡£©
A£®ºá×ø±êËõ¶ÌΪԭÀ´µÄ$\frac{1}{2}$±¶£¬×Ý×ø±êÉ쳤ΪԭÀ´µÄ2±¶
B£®ºá×ø±êÉ쳤ΪԭÀ´µÄ2±¶£¬×Ý×ø±êÉ쳤ΪԭÀ´µÄ2±¶
C£®ºá×ø±êËõ¶ÌΪԭÀ´µÄ$\frac{1}{2}$±¶£¬×Ý×ø±êËõ¶ÌΪԭÀ´µÄ$\frac{1}{2}$±¶
D£®ºá×ø±êÉ쳤ΪԭÀ´µÄ2±¶£¬×Ý×ø±êËõ¶ÌΪԭÀ´µÄ$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Éètan£¨¦Á-$\frac{¦Ð}{4}$£©=$\frac{1}{4}$£¬Ôòtan£¨¦Á+$\frac{¦Ð}{4}$£©=£¨¡¡¡¡£©
A£®-2B£®2C£®-4D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®É踴Êýz=$\frac{2+i}{£¨1+i£©^{2}}$£¨iΪÐéÊýµ¥Î»£©£¬ÔòzµÄÐ鲿ÊÇ£¨¡¡¡¡£©
A£®-1B£®1C£®-iD£®i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Èô¼¯ºÏA={x|y=£¨x-1£©0}£¬B={y|y=x2£¬x¡ÊR}£¬ÔòA¡ÉBµÈÓÚ£¨¡¡¡¡£©
A£®{x|-1¡Üx¡Ü1}B£®{x|x¡Ý0}C£®{x|x¡Ý0ÇÒx¡Ù1}D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªº¯Êýf£¨x£©=lnx+a£¨x2-x£©
£¨I£©Èôa=-1£¬Çóf£¨x£©µÄ¼«Öµ£»
£¨¢ò£©Èôf£¨x£©´æÔÚµ¥µ÷µÝ¼õÇø¼ä£¬ÇóaµÄȡֵ·¶Î§£»
£¨¢ó£©Èôf£¨x£©µÄͼÏóÓëxÖá½»ÓÚA£¨x1£¬0£©£¬B£¨x2£¬0£©£¨x1£¼x2£©£¬ABµÄÖеãΪC£¨x0£¬0£©£¬ÇóÖ¤£ºf¡ä£¨x0£©¡Ù0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖª¶¨ÒåÔÚ£¨0£¬+¡Þ£©µÄº¯Êýf£¨x£©=|4x£¨1-x£©|£¬Èô¹ØÓÚxµÄ·½³Ìf2£¨x£©+£¨t-3£©f£¨x£©+t-2=0ÓÐÇÒÖ»ÓÐ3¸ö²»Í¬µÄʵÊý¸ù£¬ÔòʵÊýtµÄȡֵ¼¯ºÏÊÇ{2£¬$5-2\sqrt{2}$}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®º¯Êýy=|log3x|µÄͼÏóÓëÖ±Ïßl1£ºy=m´Ó×óÖÁÓÒ·Ö±ð½»ÓÚµãA£¬B£¬ÓëÖ±Ïß${l_2}£ºy=\frac{8}{2m+1}£¨m£¾0£©$´Ó×óÖÁÓÒ·Ö±ð½»ÓÚµãC£¬D£®¼ÇÏß¶ÎACºÍBDÔÚxÖáÉϵÄͶӰ³¤¶È·Ö±ðΪa£¬b£¬Ôò$\frac{b}{a}$µÄ×îСֵΪ£¨¡¡¡¡£©
A£®$81\sqrt{3}$B£®$27\sqrt{3}$C£®$9\sqrt{3}$D£®$3\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸