精英家教网 > 高中数学 > 题目详情
14.设复数z=$\frac{2+i}{(1+i)^{2}}$(i为虚数单位),则z的虚部是(  )
A.-1B.1C.-iD.i

分析 利用复数的运算法则、虚部的定义即可得出.

解答 解:复数z=$\frac{2+i}{(1+i)^{2}}$=$\frac{2+i}{2i}$=$\frac{(2+i)(-i)}{2i(-i)}$=$\frac{-2i+1}{2}$=$\frac{1}{2}$-i,则z的虚部是-1.
故选:A.

点评 本题考查了复数的运算法则、虚部的定义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.若α∈(0,$\frac{π}{2}$),且cos2α=$\frac{{2\sqrt{5}}}{5}$sin(α+$\frac{π}{4}$),则tanα=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(Ⅰ)若关于x的不等式|x+1|-|x-2|>|a-3|的解集是空集,求实数a的取值范围;
(Ⅱ)对任意正实数x,y,不等式$\sqrt{2x}$+$\sqrt{3y}$<k$\sqrt{8x+6y}$恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某品牌汽车4S店对最近100位采用分期付款的购车者进行统计,统计结果如表所示:
付款方式分1期分2期分3期分4期分5期
频数4020a10b
已知分3期付款的频率为0.2,4S店经销一辆该品牌的汽车,顾客分1期付款,其利润为1万元;分2期或3期付款,其利润为1.5万元;分4期或5期付款,其利润为2万元,用Y表示经销一辆汽车的利润.
(1)求上表中a,b的值;
(2)若以频率作为概率,求事件A:“购买该品牌的3位顾客中,至多有一位采用分3期付款”的概率P(A);
(3)求Y的分布列及数学期望EY.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}{1-|x|,x≤1}\\{(x-1)^{2},x>1}\end{array}\right.$,若函数y=f(x)+f(1-x)-m恰有4个零点,则m的取值范围是(  )
A.($\frac{3}{4}$,+∞)B.(-∞,$\frac{3}{4}$)C.(0,$\frac{3}{4}$)D.($\frac{3}{4}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;\;\;\;(a>b>0)$,其离心率为$\frac{{\sqrt{3}}}{3}$,点F是其一个焦点,P 为椭圆上一点,|PF|的最小值为$\sqrt{3}-1$,直线l:y=m(x-1).
(1)求椭圆的标准方程
(2)证明:直线l与椭圆C总有两个不同的交点;
(3)设直线l与椭圆C交于A、B两点,是否存在实数m,使得以线段AB为直径的圆过坐标原点?若存在,求实数m的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.计算:
(1)$sin(-\frac{14}{3}π)+cos\frac{20}{3}π+tan(-\frac{53}{6}π)$
(2)tan675°-sin(-330°)-cos960°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.椭圆满足这样的光学性质:从椭圆的一个焦点发射光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.现在设有一个水平放置的椭圆形台球盘,满足方程:$\frac{x^2}{16}+\frac{y^2}{9}$=1,点A,B是它的两个焦点,当静止的小球放在点A处,从A点沿直线出发,经椭圆壁反弹后,再回到点A时,小球经过的最长路程是(  )
A.20B.18C.16D.14

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若log2(a+3)+log2(a-1)=5,则a=5.

查看答案和解析>>

同步练习册答案