精英家教网 > 高中数学 > 题目详情
15.(Ⅰ)若关于x的不等式|x+1|-|x-2|>|a-3|的解集是空集,求实数a的取值范围;
(Ⅱ)对任意正实数x,y,不等式$\sqrt{2x}$+$\sqrt{3y}$<k$\sqrt{8x+6y}$恒成立,求实数k的取值范围.

分析 (Ⅰ)利用绝对值不等式,结合关于x的不等式|x+1|-|x-2|>|a-3|的解集是空集,即可求实数a的取值范围;
(Ⅱ)利用柯西不等式,结合对任意正实数x,y,不等式$\sqrt{2x}$+$\sqrt{3y}$<k$\sqrt{8x+6y}$恒成立,求实数k的取值范围.

解答 解:(Ⅰ)∵||x+1|-|x-2||≤|(x+1)-(x-2)|=3,
∴-3≤|x+1|-|x-2|≤3,
∵关于x的不等式|x+1|-|x-2|>|a-3|的解集是空集
∴|a-3|≥3,
∴a≥6或a≤0;
(Ⅱ)由柯西不等式可得($\frac{1}{4}$+$\frac{1}{2}$)(8x+6y)≥($\sqrt{2x}+\sqrt{3y}$)2
∴$\frac{\sqrt{2x}+\sqrt{3y}}{\sqrt{8x+6y}}$≤$\frac{\sqrt{3}}{2}$,
∵对任意正实数x,y,不等式$\sqrt{2x}$+$\sqrt{3y}$<k$\sqrt{8x+6y}$恒成立,
∴k>$\frac{\sqrt{3}}{2}$,即实数k的取值范围是($\frac{\sqrt{3}}{2}$,+∞).

点评 本题考查绝对值不等式,考查柯西不等式的运用,考查恒成立问题,正确转化是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{lo{g}_{\frac{1}{2}}x.x>0}\end{array}\right.$在[a,a+2]上没有最大值,则a的取值范围是(-2,0].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知平面区域Ω:$\left\{\begin{array}{l}{3x+4y-18≤0}\\{x≥2}\\{y≥0}\end{array}\right.$夹在两条斜率为-$\frac{3}{4}$的平行直线之间,且这两条平行直线间的最短距离为m,若点P(x,y)∈Ω,且mx-y的最小值为p,$\frac{y}{x+m}$的最大值为q,则pq等于$\frac{27}{22}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C1的极坐标方程为$ρcos({θ-\frac{π}{3}})=1$,P为C1与x轴的交点,已知曲线C2的参数方程为$\left\{\begin{array}{l}x=cosθ\\ y=-2+sinθ\end{array}\right.$(θ为参数),M,N是曲线C2上的两点且对应的参数分别为θ=α,$θ=α+\frac{π}{2}$,其中α∈R.
(Ⅰ)写出曲线C1的直角坐标方程;
(Ⅱ)求|PM|2+|PN|2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2cosθ,过点p(-3,-5)的直线$l:\left\{{\begin{array}{l}{x=-3+\frac{{\sqrt{2}}}{2}t}\\{y=-5+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$(t为参数)与曲线C相交于点M,N两点.
(1)求曲线C的平面直角坐标系方程和直线l的普通方程;
(2)求$\frac{1}{{|{PM}|}}+\frac{1}{{|{PN}|}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.把函数y=$\frac{1}{2}$sin2x的图象经过________变化,可以得到函数y=$\frac{1}{4}$sinx的图象.(  )
A.横坐标缩短为原来的$\frac{1}{2}$倍,纵坐标伸长为原来的2倍
B.横坐标伸长为原来的2倍,纵坐标伸长为原来的2倍
C.横坐标缩短为原来的$\frac{1}{2}$倍,纵坐标缩短为原来的$\frac{1}{2}$倍
D.横坐标伸长为原来的2倍,纵坐标缩短为原来的$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,8,13,….该数列的特点是:前两个数都是1,从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数所组成的数列{an}称为“斐波那契数列”,则(a1a3-a${\;}_{2}^{2}$)(a2a4-a${\;}_{3}^{2}$)(a3a5-a${\;}_{4}^{2}$)…(a2015a2017-a${\;}_{2016}^{2}$)=(  )
A.1B.-1C.2017D.-2017

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设复数z=$\frac{2+i}{(1+i)^{2}}$(i为虚数单位),则z的虚部是(  )
A.-1B.1C.-iD.i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知F是双曲线C:$\frac{x^2}{4}-\frac{y^2}{12}=1$的左焦点,A(1,4),P是双曲线右支上的动点.求:
(1)|PF|+|PA|的最小值;
(2)|PF|-|PA|的有没有最大值?若有,求此最大值,并说明理由.

查看答案和解析>>

同步练习册答案