精英家教网 > 高中数学 > 题目详情
10.在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2cosθ,过点p(-3,-5)的直线$l:\left\{{\begin{array}{l}{x=-3+\frac{{\sqrt{2}}}{2}t}\\{y=-5+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$(t为参数)与曲线C相交于点M,N两点.
(1)求曲线C的平面直角坐标系方程和直线l的普通方程;
(2)求$\frac{1}{{|{PM}|}}+\frac{1}{{|{PN}|}}$的值.

分析 (1)利用三种方程的转化方法,即可求曲线C的平面直角坐标系方程和直线l的普通方程;
(2)将直线l的参数方程为程代入曲线C的直角坐标方程为y2=2x,利用参数的几何意义,即可求$\frac{1}{{|{PM}|}}+\frac{1}{{|{PN}|}}$的值.

解答 解:(1)由ρsin2θ=2cosθ,得ρ2sin2θ=2ρcosθ,∴y2=2x.
即曲线C的直角坐标方程为y2=2x.
消去参数t,得直线l的普通方程x-y-2=0.
(2)将直线l的参数方程为程代入曲线C的直角坐标方程为y2=2x,
得${t^2}-12\sqrt{2}t+62=0$.
由韦达定理,得${t_1}+{t_2}=12\sqrt{2}$,t1t2=62,
所以t1,t2同为正数,
则$\frac{1}{{|{PM}|}}+\frac{1}{{|{PN}|}}$=$\frac{1}{t_1}+\frac{1}{t_1}=\frac{{{t_1}+{t_2}}}{{{t_1}{t_2}}}=\frac{{6\sqrt{2}}}{31}$.

点评 本题考查三种方程的转化,考查参数方程的运用,正确计算是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设a,b,c均为正数,且a+b+c=1.证明
(1)ab+bc+ac≤$\frac{1}{3}$
(2)$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$≥9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设$f(x)=\left\{{\begin{array}{l}{{x^2},x∈[0,1)}\\{2-x,x∈[1,2]}\end{array}}\right.$,则$\int_0^2{f(x)dx=}$$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知A(-2,0),B(2,0)为椭圆C的左、右顶点,F为其右焦点,P是椭圆C上异于A,B的动点,且△APB面积的最大值为2$\sqrt{3}$
(1)求椭圆C的方程;
(2)直线AP与椭圆在点B处的切线交于点D,当直线AP绕点A转动时,试判断以BD为直径的圆与直线PF的位置关系,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直角坐标系中xOy中,曲线E的参数方程为$\left\{\begin{array}{l}{x=2cosα}\\{y=\sqrt{3}sinα}\end{array}\right.$(α为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)写出曲线E的普通方程和极坐标方程;
(2)若直线l与曲线E相交于点A、B两点,且OA⊥OB,求证:$\frac{1}{|OA{|}^{2}}$+$\frac{1}{|OB{|}^{2}}$为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(Ⅰ)若关于x的不等式|x+1|-|x-2|>|a-3|的解集是空集,求实数a的取值范围;
(Ⅱ)对任意正实数x,y,不等式$\sqrt{2x}$+$\sqrt{3y}$<k$\sqrt{8x+6y}$恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设z是复数,则下列命题中的假命题是(  )
A.若z是纯虚数,则z2<0B.若z是虚数,则z2≥0
C.若z2≥0,则z是实数D.若z2<0,则z是虚数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}{1-|x|,x≤1}\\{(x-1)^{2},x>1}\end{array}\right.$,若函数y=f(x)+f(1-x)-m恰有4个零点,则m的取值范围是(  )
A.($\frac{3}{4}$,+∞)B.(-∞,$\frac{3}{4}$)C.(0,$\frac{3}{4}$)D.($\frac{3}{4}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数y=f(2x-1)是偶函数,则函数y=f(2x+1)的对称轴是(  )
A.x=-1B.x=0C.$x=\frac{1}{2}$D.$x=-\frac{1}{2}$

查看答案和解析>>

同步练习册答案