精英家教网 > 高中数学 > 题目详情
1.设$f(x)=\left\{{\begin{array}{l}{{x^2},x∈[0,1)}\\{2-x,x∈[1,2]}\end{array}}\right.$,则$\int_0^2{f(x)dx=}$$\frac{5}{6}$.

分析 根据分段函数以及定积分的法则计算即可.

解答 解:$f(x)=\left\{{\begin{array}{l}{{x^2},x∈[0,1)}\\{2-x,x∈[1,2]}\end{array}}\right.$,
则$\int_0^2{f(x)dx=}$${∫}_{0}^{1}$x2dx+${∫}_{1}^{2}$(2-x)dx=$\frac{1}{3}{x}^{3}$|${\;}_{0}^{1}$+(2x-$\frac{1}{2}{x}^{2}$)|${\;}_{1}^{2}$=$\frac{1}{3}$+(4-2)-(2-$\frac{1}{2}$)=$\frac{5}{6}$,
故答案为:$\frac{5}{6}$

点评 本题考查了定积分的计算和分段函数的问题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知曲线C1的参数方程为$\left\{\begin{array}{l}x=2t-1\\ y=-4t-2\end{array}\right.$(t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为$ρ=\frac{2}{1-cosθ}$.
( I)求曲线C2的直角坐标系方程;
( II)设M1是曲线C1上的点,M2是曲线C2上的点,求|M1M2|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知定义在R上的奇函数f(x)满足f(x-2)=-f(x),且在区间[0,1]上是增函数,则f(-25),f(17),f(32)的大小关系为f(-25)<f(32)<f(17)(从小到大排列)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系中,曲线C1的参数方程为$\left\{\begin{array}{l}x=2+2cosθ\\ y=2sinθ\end{array}\right.$($θ∈[{-\frac{π}{2},\frac{π}{2}}]$,θ为参数)若以坐标系原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为$θ=\frac{π}{4}$(ρ∈R).
(Ⅰ)求曲线C1的普通方程和曲线C2的直角坐标方程;
(Ⅱ)将曲线C2向下平移m(m>0)个单位后得到的曲线恰与曲线C1有两个公共点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=3+\frac{\sqrt{2}}{2}t}\\{y=\sqrt{5}+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=2$\sqrt{5}$sinθ.
(I)求圆C的直角坐标方程;
(II)设圆C与直线l交于点A、B,若点P的坐标为(3,$\sqrt{5}$),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知平面区域Ω:$\left\{\begin{array}{l}{3x+4y-18≤0}\\{x≥2}\\{y≥0}\end{array}\right.$夹在两条斜率为-$\frac{3}{4}$的平行直线之间,且这两条平行直线间的最短距离为m,若点P(x,y)∈Ω,且mx-y的最小值为p,$\frac{y}{x+m}$的最大值为q,则pq等于$\frac{27}{22}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数$f(x)=\sqrt{2}sinx(cosx+sinx)-\frac{{\sqrt{2}}}{2}$在区间$[{0,\frac{π}{2}}]$上的最小值是-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2cosθ,过点p(-3,-5)的直线$l:\left\{{\begin{array}{l}{x=-3+\frac{{\sqrt{2}}}{2}t}\\{y=-5+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$(t为参数)与曲线C相交于点M,N两点.
(1)求曲线C的平面直角坐标系方程和直线l的普通方程;
(2)求$\frac{1}{{|{PM}|}}+\frac{1}{{|{PN}|}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知集合A={x|-5≤x≤3},B={x|m+1<x<2m+3}且B⊆A,求实数m的取值范围.

查看答案和解析>>

同步练习册答案