精英家教网 > 高中数学 > 题目详情
9.在平面直角坐标系中,曲线C1的参数方程为$\left\{\begin{array}{l}x=2+2cosθ\\ y=2sinθ\end{array}\right.$($θ∈[{-\frac{π}{2},\frac{π}{2}}]$,θ为参数)若以坐标系原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为$θ=\frac{π}{4}$(ρ∈R).
(Ⅰ)求曲线C1的普通方程和曲线C2的直角坐标方程;
(Ⅱ)将曲线C2向下平移m(m>0)个单位后得到的曲线恰与曲线C1有两个公共点,求实数m的取值范围.

分析 (Ⅰ)利用三种方程的转化方法,求曲线C1的普通方程和曲线C2的直角坐标方程;
(Ⅱ)将曲线C2向下平移m(m>0)个单位后得到的曲线对应方程为y=x-m,利用特殊位置求出m的值,即可求实数m的取值范围.

解答 解:(Ⅰ)由曲线C1的参数方程为$\left\{\begin{array}{l}x=2+2cosθ\\ y=2sinθ\end{array}\right.$($θ∈[{-\frac{π}{2},\frac{π}{2}}]$,θ为参数),消去参数得到曲线C1的普通方程:(x-2)2+y2=4(2≤x≤4,-2≤y≤2),…(3分)
曲线C2的极坐标方程为$θ=\frac{π}{4}$(ρ∈R),直角坐标方程为C2:y=x.…(5分)
(Ⅱ)将曲线C2向下平移m(m>0)个单位后得到的曲线对应方程为y=x-m,
则当直线与圆相切时:$\frac{{|{2-m}|}}{{\sqrt{2}}}=2$,即$m=2±2\sqrt{2}$,…(8分)
又直线恰过点(2,-2)时,m=4,可得:$4≤m<2+2\sqrt{2}$…(10分)

点评 本题考查三种方程的转化,考查直线与圆的位置关系,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知$α∈(\frac{π}{2},π)$,且$sinα=\frac{4}{5}$,则tanα=(  )
A.$\frac{3}{4}$B.$-\frac{3}{4}$C.$\frac{4}{3}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设a,b,c均为正数,且a+b+c=1.证明
(1)ab+bc+ac≤$\frac{1}{3}$
(2)$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$≥9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设x,y,满足约束条件$\left\{\begin{array}{l}3x-y≤2\\ x-y≥0\\ x≥0,y≥0\end{array}\right.$,则目标函数-2x+y的最大值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=xemx
(1)若函数f(x)的图象在点(1,f(1))处的切线的斜率为2e,求函数f(x)在[-2,2]上的最小值;
(2)若关于x的方程f(x)=$\frac{1}{x}$在(0,+∞)上有两个解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若α∈(0,$\frac{π}{2}$),且cos2α=$\frac{{2\sqrt{5}}}{5}$sin(α+$\frac{π}{4}$),则tanα=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设$f(x)=\left\{{\begin{array}{l}{{x^2},x∈[0,1)}\\{2-x,x∈[1,2]}\end{array}}\right.$,则$\int_0^2{f(x)dx=}$$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知A(-2,0),B(2,0)为椭圆C的左、右顶点,F为其右焦点,P是椭圆C上异于A,B的动点,且△APB面积的最大值为2$\sqrt{3}$
(1)求椭圆C的方程;
(2)直线AP与椭圆在点B处的切线交于点D,当直线AP绕点A转动时,试判断以BD为直径的圆与直线PF的位置关系,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}{1-|x|,x≤1}\\{(x-1)^{2},x>1}\end{array}\right.$,若函数y=f(x)+f(1-x)-m恰有4个零点,则m的取值范围是(  )
A.($\frac{3}{4}$,+∞)B.(-∞,$\frac{3}{4}$)C.(0,$\frac{3}{4}$)D.($\frac{3}{4}$,1)

查看答案和解析>>

同步练习册答案