精英家教网 > 高中数学 > 题目详情
2.某品牌汽车4S店对最近100位采用分期付款的购车者进行统计,统计结果如表所示:
付款方式分1期分2期分3期分4期分5期
频数4020a10b
已知分3期付款的频率为0.2,4S店经销一辆该品牌的汽车,顾客分1期付款,其利润为1万元;分2期或3期付款,其利润为1.5万元;分4期或5期付款,其利润为2万元,用Y表示经销一辆汽车的利润.
(1)求上表中a,b的值;
(2)若以频率作为概率,求事件A:“购买该品牌的3位顾客中,至多有一位采用分3期付款”的概率P(A);
(3)求Y的分布列及数学期望EY.

分析 (1)$\frac{a}{100}$=0.2,解得a=20,又40+20+a+10+b=100,解得b.
(2)记分期付款的期数为x,则x的所有可能取值为1,2,3,4,5.P(x=1)=$\frac{40}{100}$=0.4,P(x=2)=0.2,P(x=3)=0.2,P(x=4)=0.1,P(x=5)=0.1,可得所求的概率P(A).
(3)Y的可能取值为:1,1.5,2万元.可得P(Y=1)=P(x=1),P(Y=1.5)=P(x=2)+P(x=3),P(Y=2)=P(x=4)+P(x=5),即可得出.

解答 解:(1)$\frac{a}{100}$=0.2,解得a=20,又40+20+a+10+b=100,解得b=10.
(2)记分期付款的期数为x,则x的所有可能取值为1,2,3,4,5.
P(x=1)=$\frac{40}{100}$=0.4,P(x=2)=0.2,P(x=3)=0.2,P(x=4)=0.1,P(x=5)=0.1,
故所求的概率P(A)=0.83+${∁}_{3}^{1}×0.2×0.{8}^{3}$=0.896.
(3)Y的可能取值为:1,1.5,2万元.
则P(Y=1)=P(x=1)=0.4,P(Y=1.5)=P(x=2)+P(x=3)=0.4,P(Y=2)=P(x=4)+P(x=5)=0.2.
Y的分布列为:

Y11.52
P0.40.40.2
E(Y)=1×0.4+1.5×0.4+2×0.2=1.4(万元).

点评 本题考查了频率的计算、随机变量的分布列与数学期望计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{4}$)的图象过点P($\frac{π}{12}$,0),图象上与点P最近的一个最高点是Q($\frac{π}{3}$,5).
(1)求函数的解析式;
(2)求函数f(x)的递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C1的极坐标方程为$ρcos({θ-\frac{π}{3}})=1$,P为C1与x轴的交点,已知曲线C2的参数方程为$\left\{\begin{array}{l}x=cosθ\\ y=-2+sinθ\end{array}\right.$(θ为参数),M,N是曲线C2上的两点且对应的参数分别为θ=α,$θ=α+\frac{π}{2}$,其中α∈R.
(Ⅰ)写出曲线C1的直角坐标方程;
(Ⅱ)求|PM|2+|PN|2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.把函数y=$\frac{1}{2}$sin2x的图象经过________变化,可以得到函数y=$\frac{1}{4}$sinx的图象.(  )
A.横坐标缩短为原来的$\frac{1}{2}$倍,纵坐标伸长为原来的2倍
B.横坐标伸长为原来的2倍,纵坐标伸长为原来的2倍
C.横坐标缩短为原来的$\frac{1}{2}$倍,纵坐标缩短为原来的$\frac{1}{2}$倍
D.横坐标伸长为原来的2倍,纵坐标缩短为原来的$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,8,13,….该数列的特点是:前两个数都是1,从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数所组成的数列{an}称为“斐波那契数列”,则(a1a3-a${\;}_{2}^{2}$)(a2a4-a${\;}_{3}^{2}$)(a3a5-a${\;}_{4}^{2}$)…(a2015a2017-a${\;}_{2016}^{2}$)=(  )
A.1B.-1C.2017D.-2017

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设tan(α-$\frac{π}{4}$)=$\frac{1}{4}$,则tan(α+$\frac{π}{4}$)=(  )
A.-2B.2C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设复数z=$\frac{2+i}{(1+i)^{2}}$(i为虚数单位),则z的虚部是(  )
A.-1B.1C.-iD.i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx+a(x2-x)
(I)若a=-1,求f(x)的极值;
(Ⅱ)若f(x)存在单调递减区间,求a的取值范围;
(Ⅲ)若f(x)的图象与x轴交于A(x1,0),B(x2,0)(x1<x2),AB的中点为C(x0,0),求证:f′(x0)≠0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在某次数学考试中,考生的成绩ξ服从一个正态分布,即ξ~N(90,100).
(1)试求考试成绩ξ位于区间(70,110)上的概率是多少?
(2)若这次考试共有2 000名考生,试估计考试成绩在(80,100)间的考生大约有多少人?

查看答案和解析>>

同步练习册答案