精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,已知 tanAtanB﹣tanA﹣tanB=
(1)求∠C的大小;
(2)设角A,B,C的对边依次为a,b,c,若c=2,且△ABC是锐角三角形,求a2+b2的取值范围.

【答案】
(1)解:依题意: ,即

又0<A+B<π,∴


(2)解:由三角形是锐角三角形可得

由正弦定理得

=

=

,从而

则a2+b2的取值范围为:( ,8]


【解析】(1)由已知中 tanAtanB﹣tanA﹣tanB= ,变形可得 ,由两角和的正切公式,我们易得到A+B的值,进而求出∠C的大小;(2)由c=2,且△ABC是锐角三角形,再由正弦定理,我们可以将a2+b2转化为一个只含A的三角函数式,根据正弦型函数的性质,我们易求出a2+b2的取值范围.
【考点精析】根据题目的已知条件,利用正弦定理的定义的相关知识可以得到问题的答案,需要掌握正弦定理:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在数列{an}中,a1=1,an+1=2an+2n
(1)设bn= ,证明:数列{bn}是等差数列.
(2)求数列{an}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国内某知名连锁店分店开张营业期间,在固定的时间段内消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该分店经理对开业前天参加抽奖活动的人数进行统计, 表示开业第天参加抽奖活动的人数,得到统计表格如下:

经过进一步统计分析,发现具有线性相关关系.

(1)若从这天中随机抽取两天,求至少有天参加抽奖人数超过的概率;

(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程,并估计若该活动持续天,共有多少名顾客参加抽奖.

参考公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,点是椭圆上的点,离心率.

(1)求椭圆的方程;

(2)点在椭圆上,若点与点关于原点对称,连接并延长与椭圆的另一个交点为,连接,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国内某知名连锁店分店开张营业期间,在固定的时间段内消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该分店经理对开业前天参加抽奖活动的人数进行统计, 表示开业第天参加抽奖活动的人数,得到统计表格如下:

经过进一步统计分析,发现具有线性相关关系.

(1)根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(2)若该分店此次抽奖活动自开业始,持续天,参加抽奖的每位顾客抽到一等奖(价值元奖品)的概率为,抽到二等奖(价值元奖品)的概率为,抽到三等奖(价值元奖品)的概率为.

试估计该分店在此次抽奖活动结束时送出多少元奖品?

参考公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的前项和为,公差,且成等比数列.

(1)求数列的通项公式;

(2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=2sin(﹣2x+ )的图象向左平移 个单位后,得到的图象对应的解析式应该是(
A.y=﹣2sin(2x)
B.y=﹣2sin(2x+
C.y=﹣2sin(2x﹣
D.y=﹣2sin(2x+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 ).

(Ⅰ)若直线和函数的图象相切,求的值;

(Ⅱ)当时,若存在正实数,使对任意,都有恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|< )的部分图象如图所示.
(1)求函数f(x)的解析式,并写出f(x)的单调减区间;
(2)已知△ABC的内角分别是A,B,C,A为锐角,且f( )= ,求cosA的值.

查看答案和解析>>

同步练习册答案