精英家教网 > 高中数学 > 题目详情
14.某篮球队对篮球运动员的篮球技能进行统计研究,针对篮球运动员在投篮命中时,运动员在篮筐中心的水平距离这项指标,对某运动员进行了若干场次的统计,依据统计结果绘制如下频率分布直方图:
(Ⅰ)依据频率分布直方图估算该运动员投篮命中时,他到篮筐中心的水平距离的中位数;
(Ⅱ)在某场比赛中,考察他前4次投篮命中到篮筐中心的水平距离的情况,并且规定:运动员投篮命中时,他到篮筐中心的水平距离不少于4米的记1分,否则扣掉1分.用随机变量X表示第4次投篮后的总分,将频率视为概率,求X的分布列和数学期望.

分析 (I) 设该运动员到篮筐的水平距离的中位数为x,推导出0.40×(5-x)+0.20×1=0.5,由此能求出该运动员到篮筐的水平距离的中位数.
(2)由频率分布直方图得投篮命中时距离篮筐距离超过4米的概率为p=$\frac{3}{5}$,随机变量ξ的所有可能取值为-4,-2,0,2,4,分别求出相应的概率,由此能求出X的分布列和EX.

解答 解:(I) 设该运动员到篮筐的水平距离的中位数为x,
∵0.05×2+0.10+0.20<0.5,且(0.40+0.20)×1=0.6>0.5,
∴x∈[4,5]…(2分)
由0.40×(5-x)+0.20×1=0.5,解得x=4.25,
∴该运动员到篮筐的水平距离的中位数是4.25(米).
(Ⅱ)由频率分布直方图得投篮命中时距离篮筐距离超过4米的概率为p=$\frac{3}{5}$,
随机变量ξ的所有可能取值为-4,-2,0,2,4,…(8分)
$P({X=-4})={({\frac{2}{5}})^4}=\frac{16}{625}$,
$P(X=2)=C_4^3{(\frac{2}{5})^1}{(\frac{3}{5})^3}=\frac{216}{625}$,
$P(X=-2)=C_4^1{(\frac{2}{5})^3}(\frac{3}{5})=\frac{96}{625}$,
$P(X=0)=C_4^2{(\frac{2}{5})^2}{(\frac{3}{5})^2}=\frac{216}{625}$,
$P(X=2)=C_4^3{(\frac{2}{5})^1}{(\frac{3}{5})^3}=\frac{216}{625}$,
$P({X=4})={({\frac{3}{5}})^4}=\frac{81}{625}$,
∴X的分布列为:

X-4-2024
P$\frac{16}{625}$$\frac{96}{625}$$\frac{216}{625}$$\frac{216}{625}$$\frac{81}{625}$
EX=(-4)×$\frac{16}{625}$+(-2)×$\frac{96}{625}$+0×$\frac{216}{625}$+2×$\frac{216}{625}$+4×$\frac{81}{625}$=$\frac{4}{5}$.…(12分)

点评 本题考查中位数的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,直三棱柱ABC-A1B1C1中,D是AB的中点.
(1)证明:BC1∥平面A1CD;
(2)设AA1=AC=CB=2,AB=2$\sqrt{2}$,求异面直线BC1与A1D所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知圆的方程为x2+y2-8x+15=0,若直线y=kx+2上至少存在一点,使得以该点为圆心,半径为1的圆与圆C有公共点,则k的最小值是(  )
A.$-\frac{4}{3}$B.$-\frac{5}{3}$C.$-\frac{3}{5}$D.$-\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{1}{2}$,且过点$(1,\frac{3}{2})$,其长轴的左右两个端点分别为A,B,直线l:y=$\frac{3}{2}$x+m交椭圆于两点C,D.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设直线AD,CB的斜率分别为k1,k2,若k1:k2=2:1,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设动直线l:y=kx+m(其中k,m为整数)与椭圆$\frac{x^2}{16}+\frac{y^2}{12}=1$交于不同两点A,B,与双曲线$\frac{x^2}{4}-\frac{y^2}{12}=1$交于不同两点C,D,且$\overrightarrow{AC}$+$\overrightarrow{BD}$=$\overrightarrow{0}$,则符合上述条件的直线l共有(  )
A.5条B.7条C.9条D.11条

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,它的四个顶点构成的四边形的面积为4$\sqrt{3}$.
(1)求椭圆C的方程;
(2)设椭圆C的右焦点为F,过F作两条互相垂直的直线l1,l2,直线l1与椭圆C交于P,Q两点,直线l2与直线x=4交于N点.
(1)求证:线段PQ的中点在直线ON上;
(2)求$\frac{|PQ|}{|FN|}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某学校有120名教师,且年龄都在20岁到60岁之间,各年龄段人数按分组,其频率分布直方图如图所示,学校要求每名教师都要参加两项培训,培训结束后进行结业考试.已知各年龄段两项培训结业考试成绩优秀的人数如表示,假设两项培训是相互独立的,结业考试成绩也互不影响.
年龄分组A项培训成绩优秀人数B项培训成绩优秀人数
[20,30)3018
[30,40)3624
[40,50)129
[50,60]43
(1)若用分层抽样法从全校教师中抽取一个容量为40的样本,求从年龄段[20,30)抽取的人数;
(2)求全校教师的平均年龄;
(3)随机从年龄段[20,30)和[30,40)内各抽取1人,设这两人中两项培训结业考试成绩都优秀的人数为X,求X的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设a>0,若$\underset{lim}{n→∞}$$\frac{1+\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n-1}}}{1+a+{a}^{2}+…{a}^{n-1}}$$≤\frac{1}{2}$,则a的取值范围是[$\frac{3}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.甲、乙、丙人应邀参加某综艺栏目的猜数游戏,猜中则游戏结束,主持人先给出数字所在区间[3,10],让甲猜(所猜数字为整数,下同),如果甲猜中,甲将获得1000元奖金;如果甲未猜中,主持人给出数字所在区间[5,8],让乙猜,如果乙猜中,甲和乙均可获得5000元奖金;如果乙未猜中,主持人给出数字所在区间[6,7],让丙猜,如果丙猜中,甲、乙和丙均可获得2000元奖金,否则游戏结束.
(1)求甲至少获得5000元奖金的概率;
(2)记乙获得的奖金为X元,求X的分布列及数学期望.

查看答案和解析>>

同步练习册答案