【题目】设各项均为正数的数列
的前
项和为
,已知
,且
对一切
都成立.
(1)当
时.
①求数列
的通项公式;
②若
,求数列
的前
项的和
;
(2)是否存在实数
,使数列
是等差数列.如果存在,求出
的值;若不存在,说明理由.
科目:高中数学 来源: 题型:
【题目】已知抛物线
的顶点为原点,其焦点
到直线
的距离为
.设
为直线
上的点,过点
作抛物线
的两条切线
,其中
为切点.
(1) 求抛物线
的方程;
(2) 当点
为直线
上的定点时,求直线
的方程;
(3) 当点
在直线
上移动时,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列
的前n项和为
,已知
,
,
.
(1)证明:
为等比数列,求出
的通项公式;
(2)若
,求
的前n项和
,并判断是否存在正整数n使得
成立?若存在求出所有n值;若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的一个焦点为
,离心率为
.
(1)求
的标准方程;
(2)若动点
为
外一点,且
到
的两条切线相互垂直,求
的轨迹
的方程;
(3)设
的另一个焦点为
,自直线
:
上任意一点
引(2)所求轨迹
的一条切线,切点为
,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】法国有个名人叫做布莱尔·帕斯卡,他认识两个赌徒,这两个赌徒向他提出一个问题,他们说,他们下赌金之后,约定谁先赢满5局,谁就获得全部赌金700法郎,赌了半天,甲赢了4局,乙赢了3局,时间很晚了,他们都不想再赌下去了.假设每局两赌徒输赢的概率各占
,每局输赢相互独立,那么这700法郎如何分配比较合理( )
A.甲400法郎,乙300法郎B.甲500法郎,乙200法郎
C.甲525法郎,乙175法郎D.甲350法郎,乙350法郎
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据有关资料预测,某市下月1—14日的空气质量指数趋势如下图所示.,根据已知折线图,解答下面的问题:
![]()
(1)求污染指数的众数及前五天污染指数的平均值;(保留整数)
(2)为了更好发挥空气质量监测服务人民的目的,监测部门在发布空气质量指数的同时,也给出了出行建议,比如空气污染指数大于150时需要戴口罩,超过200时建议减少外出活动等等.如果某人事先没有注意到空气质量预报,而在1—12号这12天中随机选定一天,欲在接下来的两天中(不含选定当天)进行外出活动.求其外出活动的两天期间.
①恰好都遭遇重度及以上污染天气的概率;
②至少有一天能避开重度及以上污染天气的概率.
附:空气质量等级参考表:
|
|
|
|
|
|
|
等级 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com