【题目】已知椭圆
:
的一个焦点为
,离心率为
.
(1)求
的标准方程;
(2)若动点
为
外一点,且
到
的两条切线相互垂直,求
的轨迹
的方程;
(3)设
的另一个焦点为
,自直线
:
上任意一点
引(2)所求轨迹
的一条切线,切点为
,求证:
.
【答案】(1)
(2)
(3)证明见解析
【解析】
(1)根据离心率和焦点坐标可求得
的值,进而得到椭圆的方程;
(2)设
,切点分别为
,
,对点
的位置进行讨论,即切线
的斜率不存在和存在时;当
设切线方程为
代入椭圆的方程得到关于
的二次方程,利用直线互相垂直得到
的关系,从而得到点
的轨迹
的方程;
(3)设
,将
,
都用
进行表示,即可得答案.
(1)设
,
由题设,得
,
,所以
,
,
所以
的标准方程为
.
(2)设
,切点分别为
,
,
当
时,设切线方程为
,
联立方程,得
,
消去
,得
,①
关于
的方程①的判别式
,
化简,得
,②
关于
的方程②的判别式![]()
,
因为
在椭圆
外,
所以
,即
,所以
,
关于
的方程②有两个实根
,
分别是切线
,
的斜率.
因为
,所以
,即
,化简为
.
当
时,可得
,满足
,
所以
的轨迹方程为
.
(3)如图,
,设
,
,
,
所以
,即
.
![]()
科目:高中数学 来源: 题型:
【题目】3个红球与3个黑球随机排成一行,从左到右依次在球上标记1,2,3,4,5,6,则红球上的数字之和小于黑球上的数字之和的概率为( )
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】德国著名数学家狄利克雷(Dirichlet,1805~1859)在数学领域成就显著.19世纪,狄利克雷定义了一个“奇怪的函数”
其中R为实数集,Q为有理数集.则关于函数
有如下四个命题,正确的为( )
A.函数
是偶函数
B.
,
,
恒成立
C.任取一个不为零的有理数T,
对任意的
恒成立
D.不存在三个点
,
,
,使得
为等腰直角三角形
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设各项均为正数的数列
的前
项和为
,已知
,且
对一切
都成立.
(1)当
时.
①求数列
的通项公式;
②若
,求数列
的前
项的和
;
(2)是否存在实数
,使数列
是等差数列.如果存在,求出
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果前一个人10分钟内不能完成任务则撤出,再派下一个人.现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别为
,
,
,假设
,
,
互不相等,且假定各人能否完成任务的事件相互独立.
(1)如果按甲最先,乙次之,丙最后的顺序派人,求任务能被完成的概率.若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?
(2)假定
,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的数学期望达到最小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,直线
的参数方程为
(
为参数),在以坐标原点为极点,
轴的正半轴为极轴的极坐标系中,曲线
的极坐标方程为
(
且
).
(I)求直线
的极坐标方程及曲线
的直角坐标方程;
(Ⅱ)已知
是直线
上的一点,
是曲线
上的一点,
,
,若
的最大值为2,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于数列
,若满足
,则称数列
为“0-1数列”.定义变换
,
将“0-1数列”
中原有的每个1都变成0,1,原有的每个0都变成1,0.例如
:1,0,1,则
设
是“0-1数列”,令![]()
3,….
(Ⅰ) 若数列
:
求数列
;
(Ⅱ) 若数列
共有10项,则数列
中连续两项相等的数对至少有多少对?请说明理由;
(Ⅲ)若
为0,1,记数列
中连续两项都是0的数对个数为
,
.求
关于
的表达式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com