【题目】已知函数f(x)=ex﹣e﹣x , 下列命题正确的有 . (写出所有正确命题的编号)
①f(x)是奇函数;
②f(x)在R上是单调递增函数;
③方程f(x)=x2+2x有且仅有1个实数根;
④如果对任意x∈(0,+∞),都有f(x)>kx,那么k的最大值为2.
【答案】①②④
【解析】解:根据题意,依次分析4个命题:
对于①、f(x)=ex﹣e﹣x , 定义域是R,且f(﹣x)=e﹣x﹣ex=﹣f(x),f(x)是奇函数;故①正确;
对于②、若f(x)=ex﹣e﹣x , 则f′(x)=ex+e﹣x>0,故f(x)在R递增;故②正确;
对于③、f(x)=x2+2x,令g(x)=ex﹣e﹣x﹣x2﹣2x,
令x=0可得,g(0)=0,即方程f(x)=x2+2x有一根x=0,
g(3)=e3﹣ ﹣13<0,g(4)=e4﹣ ﹣20>0,
则方程f(x)=x2+2x有一根在(3,4)之间,
故③错误;
对于④、如果对任意x∈(0,+∞),都有f(x)>kx,即ex﹣e﹣x﹣kx>0恒成立,
令h(x)=ex﹣e﹣x﹣kx,且h(0)=0,
若h(x)>0恒成立,则必有h′(x)=ex+e﹣x﹣k>0恒成立,
若ex+e﹣x﹣k>0,即k<ex+e﹣x=ex+ 恒成立,
而ex+ ≥2,若有k<2,
故④正确;
综合可得:①②④正确;
所以答案是:①②④.
【考点精析】本题主要考查了命题的真假判断与应用的相关知识点,需要掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】从全校参加数学竞赛的学生的试卷中抽取一个样本,考察竞赛的成绩分布情况,将样本分成5组,绘成频率分布直方图,图中从左到右各小组的小长方形的高之比为1:3:6:4:2,最右边一组频数是6,请结合直方图提供的信息,解答下列问题:
(1)样本的容量是多少?
(2)列出频率分布表;
(3)估计这次竞赛中,成绩高于60分的学生占总人数的百分比;
(4)成绩落在哪个范围内的人数最多?并求出该小组的频数,频率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)求f(2),f(x);
(2)证明:函数f(x)在[1,17]上为增函数;
(3)试求函数f(x)在[1,17]上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设离心率为 的椭圆E: + =1(a>b>0)的左、右焦点为F1 , F2 , 点P是E上一点,PF1⊥PF2 , △PF1F2内切圆的半径为 ﹣1.
(1)求E的方程;
(2)矩形ABCD的两顶点C、D在直线y=x+2,A、B在椭圆E上,若矩形ABCD的周长为 ,求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司购买了A,B,C三种不同品牌的电动智能送风口罩.为了解三种品牌口罩的电池性能,现采用分层抽样的方法,从三种品牌的口罩中抽出25台,测试它们一次完全充电后的连续待机时长,统计结果如下(单位:小时):
A | 4 | 4 | 4.5 | 5 | 5.5 | 6 | 6 | |||
B | 4.5 | 5 | 6 | 6.5 | 6.5 | 7 | 7 | 7.5 | ||
C | 5 | 5 | 5.5 | 6 | 6 | 7 | 7 | 7.5 | 8 | 8 |
(1)已知该公司购买的C品牌电动智能送风口罩比B品牌多200台,求该公司购买的B品牌电动智能送风口罩的数量;
(2)从A品牌和B品牌抽出的电动智能送风口罩中,各随机选取一台,求A品牌待机时长高于B品牌的概率;
(3)再从A,B,C三种不同品牌的电动智能送风口罩中各随机抽取一台,它们的待机时长分别是a,b,c(单位:小时).这3个新数据与表格中的数据构成的新样本的平均数记为μ1 , 表格中数据的平均数记为μ0 . 若μ0≤μ1 , 写出a+b+c的最小值(结论不要求证明).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: 的离心率为 ,右焦点为F,点B(0,1)在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点 的直线交椭圆C于M,N两点,交直线x=2于点P,设 , ,求证:λ+μ为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在坐标原点,焦点在轴上,椭圆上的点到焦点距离的最大值为3,最小值为1.
(1)求椭圆的标准方程;
(2)若直线: 与椭圆相交于, 两点(, 不是左右顶点),且以为直径的圆过椭圆的右顶点.求证:直线过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点M到坐标原点的距离和它到直线l:x=﹣m(m>0)的距离之比是一个常数 .
(Ⅰ)求点M的轨迹;
(Ⅱ)若m=1时得到的曲线是C,将曲线C向左平移一个单位长度后得到曲线E,过点P(﹣2,0)的直线l1与曲线E交于不同的两点A(x1 , y1),B(x2 , y2),过F(1,0)的直线AF、BF分别交曲线E于点D、Q,设 =α , =β ,α、β∈R,求α+β的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com