【题目】已知椭圆
的中心在坐标原点,焦点在
轴上,椭圆
上的点到焦点距离的最大值为3,最小值为1.
(1)求椭圆
的标准方程;
(2)若直线
:
与椭圆
相交于
,
两点(
,
不是左右顶点),且以
为直径的圆过椭圆
的右顶点.求证:直线
过定点,并求出该定点的坐标.
【答案】(1)
;(2)证明见解析,定点坐标为
.
【解析】试题分析:(1)根据椭圆的几何意义,知
,
;(2)联立方程
,得到根与系数的关系,以AB为直径的圆过椭圆C的右顶点D,所以
,
试题解析:(ⅰ)由题意设椭圆的标准方程为
,
由已知得:a+c=3,a-c=1,
∴a=2,c=1,
∴b2=a2-c2=3,
∴椭圆的标准方程为
。
(ⅱ)设A(x1,y1),B(x2,y2),
联立
,得(3+4k2)x2+8mkx+4(m2-3)=0,
则
,
又y1y2=(kx1+m)(kx2+m)=k2x1x2+mk(x1+x2)+m2
,
因为以AB为直径的圆过椭圆的右顶点D(2,0),
∴![]()
整理为
,得
,
,或
,代入
后,得到
过
,或是
过![]()
科目:高中数学 来源: 题型:
【题目】某地级市共有
中学生,其中有
学生在
年享受了“国家精准扶贫”政策,在享受“国家精准扶贫”政策的学生中困难程度分为三个等次:一般困难、很困难、特别困难,且人数之比为
,为进一步帮助这些学生,当地市政府设立“专项教育基金”,对这三个等次的困难学生每年每人分别补助
元、
元、
元.经济学家调查发现,当地人均可支配年收入较上一年每增加
,一般困难的学生中有
会脱贫,脱贫后将不再享受“精准扶贫”政策,很困难的学生有
转为一般困难学生,特别困难的学生中有
转为很困难学生.现统计了该地级市
年到
年共
年的人均可支配年收入,对数据初步处理后得到了如图所示的散点图和表中统计量的值,其中年份
取
时代表
年,
取
时代表
年,……依此类推,且
与
(单位:万元)近似满足关系式
.(
年至
年该市中学生人数大致保持不变)
|
|
|
|
|
|
![]()
(1)估计该市
年人均可支配年收入为多少万元?
(2)试问该市
年的“专项教育基金”的财政预算大约为多少万元?
附:对于一组具有线性相关关系的数据
,
,…,
,其回归直线方程
的斜率和截距的最小二乘估计分别为
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex﹣e﹣x , 下列命题正确的有 . (写出所有正确命题的编号)
①f(x)是奇函数;
②f(x)在R上是单调递增函数;
③方程f(x)=x2+2x有且仅有1个实数根;
④如果对任意x∈(0,+∞),都有f(x)>kx,那么k的最大值为2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数f(x)=2
cos2x﹣2sinxcosx﹣
的图象向左平移t(t>0)个单位,所得图象对应的函数为奇函数,则t的最小值为( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的上下两个焦点分别为
,
,过点
与
轴垂直的直线交椭圆
于
、
两点,
的面积为
,椭圆
的离心力为
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)已知
为坐标原点,直线
:
与
轴交于点
,与椭圆
交于
,
两个不同的点,若存在实数
,使得
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正三棱锥A﹣BCD的外接球半径R=
,P,Q分别是AB,BC上的点,且满足
=
=5,DP⊥PQ,则该正三棱锥的高为( )
A.![]()
B.![]()
C.![]()
D.2 ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在从4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下表格:
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
温差x/℃ | 10 | 11 | 13 | 12 | 8 |
发芽数y/颗 | 23 | 25 | 30 | 26 | 16 |
(1)从这5天中任选2天,记发芽的种子数分别为
,求事件“
均不小于25”的概率;
(2) 若由线性回归方程得到的估计数据与4月份所选5天的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的. 请根据4月7日,4月15日与4月21日这三天的数据,求出
关于
的线性回归方程
,并判定所得的线性回归方程是否可靠?
参考公式:
, ![]()
参考数据: ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的一个焦点与抛物线
的焦点相同,
为椭圆的左、右焦点.
为椭圆上任意一点,
面积的最大值为1.
(1)求椭圆
的方程;
(2)直线
交椭圆
于
两点.若直线
与
的斜率分别为
,且
.求证:直线
过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的函数f(x)满足:(1)f(x)+f(2﹣x)=0,(2)f(x﹣2)=f(﹣x),(3)在[﹣1,1]上表达式为f(x)=
,则函数f(x)与函数g(x)=
的图象区间[﹣3,3]上的交点个数为( )
A.5
B.6
C.7
D.8
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com