分析 求得抛物线的焦点,可得直线l的方程,代入抛物线方程,由韦达定理和弦长公式,计算即可得到.
解答 解:由抛物线x2=4y的焦点为F(0,1),
所以斜率为$\frac{1}{2}$的直线l的方程为$y=\frac{1}{2}x+1$.
由$\left\{\begin{array}{l}y=\frac{1}{2}x+1\\{x^2}=4y\end{array}\right.$得(2y-2)2=4y,
即y2-3y+1=0.
设A(x1,y1),B(x2,y2),则y1+y2=3,
所以|AB|=y1+y2+p=3+2=5.
点评 本题考查抛物线的方程和性质,主要考查直线和抛物线的位置关系,注意运用韦达定理和弦长公式,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{2}$-4 | B. | 4-2$\sqrt{2}$ | C. | 4+2$\sqrt{2}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -9 | B. | -6 | C. | -1 | D. | $\frac{3}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com