| A. | -9 | B. | -6 | C. | -1 | D. | $\frac{3}{2}$ |
分析 作出不等式组对应的平面区域,利用目标函数的几何意义,求目标函数z=x+y的最小值.
解答
解:作出不等式组对应的平面区域如图:(阴影部分ABC).
由z=x+y得y=-x+z,平移直线y=-x+z,
由图象可知当直线y=-x+z经过点A时,
直线y=-x+z的截距最小,此时z最小.
由$\left\{\begin{array}{l}{x=-3}\\{y=x}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-3}\\{y=-3}\end{array}\right.$,即A(-3,-3),
代入目标函数z=x+y得z=-3-3=-6.
即目标函数z=x+y的最小值为-6.
故选:B.
点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com