精英家教网 > 高中数学 > 题目详情
12.在直角坐标系xOy中,直线l的参数方程是$\left\{\begin{array}{l}x=2+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数),以原点O为极点,以x轴正半轴为极轴,圆C的极坐标方程为$ρ=4\sqrt{2}cos(θ+\frac{π}{4})$
(Ⅰ)将圆C的极坐标方程化为直角坐标方程;
(Ⅱ)若直线l与圆C交于A,B两点,点P的坐标为(2,0),试求$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$的值.

分析 (I)由$ρ=4\sqrt{2}cos(θ+\frac{π}{4})$,展开化为ρ2=$4\sqrt{2}×\frac{\sqrt{2}}{2}$(ρcosθ-ρsinθ),把$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$代入即可得出.
(II)把直线l的参数方程是$\left\{\begin{array}{l}x=2+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数)代入圆的方程可得:${t}^{2}+2\sqrt{2}t-4=0$,利用根与系数的关系可得|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$.利用$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$=$\frac{1}{|{t}_{1}|}+\frac{1}{|{t}_{2}|}$=$\frac{|{t}_{1}-{t}_{2}|}{|{t}_{1}{t}_{2}|}$即可得出.

解答 解:(I)由$ρ=4\sqrt{2}cos(θ+\frac{π}{4})$,展开化为ρ2=$4\sqrt{2}×\frac{\sqrt{2}}{2}$(ρcosθ-ρsinθ),
化为x2+y2=4x-4y,即(x-2)2+(y+2)2=8.
(II)把直线l的参数方程是$\left\{\begin{array}{l}x=2+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数)代入圆的方程可得:${t}^{2}+2\sqrt{2}t-4=0$,
∴t1+t2=-2$\sqrt{2}$,t1t2=-4<0.
|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=$\sqrt{(-2\sqrt{2})^{2}-4×(-4)}$=2$\sqrt{6}$.
∴$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$=$\frac{1}{|{t}_{1}|}+\frac{1}{|{t}_{2}|}$=$\frac{|{t}_{1}-{t}_{2}|}{|{t}_{1}{t}_{2}|}$=$\frac{2\sqrt{6}}{4}$=$\frac{\sqrt{6}}{2}$.

点评 本题考查了把极坐标方程化为直角方程、直线参数方程的应用、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设方程x4+ax-4=0的各实根为x1,x2,…xk(k≤4)若点(xi,$\frac{4}{{x}_{i}}$)(i=1,2,…k)均在直线y=x的同侧,则实数a的取值范围是(  )
A.(4,+∞)B.(-∞,-6)∪(6,+∞)C.(6,+∞)D.(-∞,-4)∪(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示,已知直角梯形ABCD所在的平面垂直于平面ABC,∠BAC=∠ACD=90°,AB=AC=AE=2ED=2a,F是BC的边的中点.
(1)求证:DF∥平面EAB;
(2)求二面角E-BD-F的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.定义在R上函数f(x)满足:f(-x)=f(x),f(x+2)=f(2-x),若曲线y=f(x)在x=-1处的切线方程x-y+3=0,则该曲线在x=5处的切线方程为x+y-7=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知直线l,平面α,β,γ,则下列能推出α∥β的条件是(  )
A.l⊥α,l∥βB.l∥α,l∥βC.α⊥γ,γ⊥βD.α∥γ,γ∥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,⊙O的半径OB垂直于直径AC,M为线段OA上一点,BM的延长线交⊙O于点N,过点N的切线交CA的延长线于点P.求证:PM2=PA•PC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数y=x3与y=${(\frac{1}{2})^{x-2}}$图形的交点为(a,b),则a所在区间是(  )
A.(0,1)B.(1,2 )C.(2,3 )D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在直角坐标系xoy中,以原点为极点,x轴正半轴为极轴建立极坐标系,已知两点的极坐标为$A({2,\frac{π}{3}})$、$B({4,\frac{2π}{3}})$,则直线AB的直角坐标方程为$x+\sqrt{3}y-4=0$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.对于使f(x)≥N成立的所有常数N中,我们把N的最大值叫作f(x)的下确界.若a,b∈(0,+∞),且a+b=2,则$\frac{1}{3a}$+$\frac{3}{b}$的下确界为(  )
A.$\frac{16}{3}$B.$\frac{8}{3}$C.$\frac{4}{3}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案