分析 (I)由$ρ=4\sqrt{2}cos(θ+\frac{π}{4})$,展开化为ρ2=$4\sqrt{2}×\frac{\sqrt{2}}{2}$(ρcosθ-ρsinθ),把$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$代入即可得出.
(II)把直线l的参数方程是$\left\{\begin{array}{l}x=2+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数)代入圆的方程可得:${t}^{2}+2\sqrt{2}t-4=0$,利用根与系数的关系可得|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$.利用$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$=$\frac{1}{|{t}_{1}|}+\frac{1}{|{t}_{2}|}$=$\frac{|{t}_{1}-{t}_{2}|}{|{t}_{1}{t}_{2}|}$即可得出.
解答 解:(I)由$ρ=4\sqrt{2}cos(θ+\frac{π}{4})$,展开化为ρ2=$4\sqrt{2}×\frac{\sqrt{2}}{2}$(ρcosθ-ρsinθ),
化为x2+y2=4x-4y,即(x-2)2+(y+2)2=8.
(II)把直线l的参数方程是$\left\{\begin{array}{l}x=2+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数)代入圆的方程可得:${t}^{2}+2\sqrt{2}t-4=0$,
∴t1+t2=-2$\sqrt{2}$,t1t2=-4<0.
|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=$\sqrt{(-2\sqrt{2})^{2}-4×(-4)}$=2$\sqrt{6}$.
∴$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$=$\frac{1}{|{t}_{1}|}+\frac{1}{|{t}_{2}|}$=$\frac{|{t}_{1}-{t}_{2}|}{|{t}_{1}{t}_{2}|}$=$\frac{2\sqrt{6}}{4}$=$\frac{\sqrt{6}}{2}$.
点评 本题考查了把极坐标方程化为直角方程、直线参数方程的应用、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (4,+∞) | B. | (-∞,-6)∪(6,+∞) | C. | (6,+∞) | D. | (-∞,-4)∪(4,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | (1,2 ) | C. | (2,3 ) | D. | (3,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{16}{3}$ | B. | $\frac{8}{3}$ | C. | $\frac{4}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com