精英家教网 > 高中数学 > 题目详情
7.已知直线l,平面α,β,γ,则下列能推出α∥β的条件是(  )
A.l⊥α,l∥βB.l∥α,l∥βC.α⊥γ,γ⊥βD.α∥γ,γ∥β

分析 根据空间中的平行与垂直关系,对选项中的问题进行判断分析,以便得出正确的结论.

解答 解:对于A,当l⊥α,l∥β时,有α⊥β,或α∥β,∴A不符合条件;
对于B,当l∥α,l∥β时,α与β可能平行,也可能相交,∴B不符合条件;
对于C,当α⊥γ,γ⊥β时,α与β可能平行,也可能相交,∴C不符合条件;
对于D,当α∥γ,γ∥β时,有α∥β,∴D满足题意.
故选:D.

点评 本题考查了空间中的平行与垂直的应用问题,也考查了几何符号语言的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.某校高三文科学生的一次数学周考成绩绘制了如右图的频率分布直方图,其中成绩在[40,70]内的学生有120人,则该校高三文科学生共有400人.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.方程lg($\sqrt{3}$sinx)=lg(-cosx)的解集为{x|x=2kπ+$\frac{5π}{6}$,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某校为了解本校高三学生学习心里状态,采用系统抽样方法从800人中抽取40人参加某种测试,为此将题目随机编号1,2,…,800,分组后再第一组采用简单随机抽样的方法抽到号码为18,抽到的40人中,编号落入区间[1,200]的人做试卷A,编号落入区间[201,560]的人做试卷B,其余的人做试卷C,则做试卷C的人数为(  )
A.10B.12C.18D.28

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xoy中,点M的坐标为(-1,2),在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l的方程为ρcosθ+ρsinθ-1=0
(I)判断点M与直线l的位置关系;
(Ⅱ)设直线l与抛物线y=x2相交于A,B两点,求点M到A,B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在直角坐标系xOy中,直线l的参数方程是$\left\{\begin{array}{l}x=2+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数),以原点O为极点,以x轴正半轴为极轴,圆C的极坐标方程为$ρ=4\sqrt{2}cos(θ+\frac{π}{4})$
(Ⅰ)将圆C的极坐标方程化为直角坐标方程;
(Ⅱ)若直线l与圆C交于A,B两点,点P的坐标为(2,0),试求$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.(理)已知函数y=f(x)与y=f-1(x)互为反函数,又y=f-1(x+1)与y=g(x)的图象关于直线y=x对称,若f(x)是R上的函数,f(x)=ax+x+1(a>1),则g(x)=y=ax+x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在等比数列{an}中,若a1+a2=20,a3+a4=40,则S6=(  )
A.140B.120C.210D.520

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知点A(-1,0),B(1,0),过定点M(0,2)的直线l上存在点P,使得$\overrightarrow{PA}•\overrightarrow{PB}<0$,则直线l的倾斜角α的取值范围是(  )
A.$(\frac{π}{3},\frac{2π}{3})$B.$[\frac{π}{3},\frac{2π}{3}]$C.$[0,\frac{π}{3}]∪[\frac{2π}{3},π)$DD.$[0,\frac{π}{3})∪(\frac{2π}{3},π)$

查看答案和解析>>

同步练习册答案