精英家教网 > 高中数学 > 题目详情
通过配方变形,说出函数y=-2x2+8x-8的图象的开口方向,对称轴,顶点坐标,这个函数有最大值还是最小值?这个值是多少?
考点:二次函数的性质
专题:函数的性质及应用
分析:直接利用配方法求解所求问题即可.
解答: 解:y=-2x2+8x-8=-2(x-2)2
∴开口向下,对称轴x=2,顶点坐标(2,0),x=2时,y最小值=0
点评:本题考查二次函数的基本性质的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=lg
1+2xa
2
(a∈R) 
(1)已知函数F(x)=2f(x)-f(2x)有两个不同的零点,求a的取值范围;
(2)若函数f(x)在定义域x∈(-∞,1]上有意义,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

正三棱柱的左视图如图所示,则该正三棱柱的侧面积为(  )
A、4
B、12
C、
4
3
3
D、24

查看答案和解析>>

科目:高中数学 来源: 题型:

一个算法的程序框图如图所示,如果输入的x的值为2014,则输出的i的结果为(  )
A、3B、5C、6D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}共有n(n≥3,n∈N)项,且a1=an=1,对每个i(1≤i≤n-1,i∈N),均有
ai+1
ai
∈{
1
2
,1,2}.
(1)当n=3时,写出满足条件的所有数列{an}(不必写出过程);
(2)当n=8时,求满足条件的数列{an}的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C经过点A(0,2),B(
1
2
3
).
(Ⅰ)求椭圆C的方程.
(Ⅱ)设P(x0,y0)为椭圆C上的动点,求x20+2y0的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的焦距为2,且与直线y=x-
3
相切.
(1)求椭圆C的方程;
(2)设椭圆C的左、右顶点分别为A,B,过点P(3,0)的直线l与椭圆C交于两点M,N(M在N的右侧),直线AM,BN相交于点Q,求证:点Q在一条定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C1上任意一点M到直线l:x=4的距离是它到点F(1,0)距离的2倍;曲线C2是以原点为顶点,F为焦点的抛物线.
(Ⅰ)求C1,C2的方程;
(Ⅱ)过F作两条互相垂直的直线l1,l2,其中l1与C1相交于点A,B,l2与C2相交于点C,D,求四边形ACBD面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+ln(x+1)
x

(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)当x>0时,f(x)>
k
x+1
恒成立,求整数k的最大值.

查看答案和解析>>

同步练习册答案