精英家教网 > 高中数学 > 题目详情

【题目】已知数列{bn}是首项b1=1,b4=10的等差数列,设bn+2=3 an(n∈n*).
(1)求证:{an}是等比数列;
(2)记cn= ,求数列{cn}的前n项和Sn
(3)记dn=(3n+1)Sn , 若对任意正整数n,不等式 + +…+ 恒成立,求整数m的最大值.

【答案】
(1)证明:b1=1,b4=10,可得

公差d= =3,bn=1+3(n﹣1)=3n﹣2;

bn+2=3 an=3n,

则an=( n

=

可得数列{an}是首项为 ,公比为 的等比数列


(2)解:cn= = = ),

则前n项和Sn= (1﹣ + +…+

= (1﹣ )=


(3)解:dn=(3n+1)Sn=(3n+1) =n.

则问题转化为对任意正整数n使

不等式 + +…+ 恒成立

则f(n+1)﹣f(n)=[ + +…+ ]﹣( + +…+

= + = >0

所以f(n+1)>f(n),故f(n)的最小值是f(1)=

恒成立,即m<12,

知整数m可取最大值为11


【解析】(1)运用等差数列的通项公式,可得公差d=3,进而得到bn=3n﹣2,再由对数的运算性质和等比数列的定义,即可得证;(2)求得cn= = = ),再由数列的求和方法:裂项相消求和即可得到所求和;(3)求得dn=(3n+1)Sn=(3n+1) =n.设 ,判断为单调递增,求得最小值f(1),再由恒成立思想可得m的范围,进而得到最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数
(Ⅰ) 证明f(x)在[1,+∞)上是增函数;
(Ⅱ) 求f(x)在[1,4]上的最大值及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点M(x,y)到直线lx=4的距离是它到点N(1,0)的距离的2倍.
(1)求动点M的轨迹C的方程;
(2)过点P(0,3)的直线m与轨迹C交于A,B两点.若APB的中点,求直线m的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若正实数a,b满足a+b=1,则(
A. 有最大值4
B.ab有最小值
C. 有最大值
D.a2+b2有最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2﹣6x﹣4y+4=0,点P(6,0).
(1)求过点P且与圆C相切的直线方程l;
(2)若圆M与圆C外切,且与x轴切于点P,求圆M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体ABCD﹣A1B1C1D1中,S是B1D1的中点,E,F,G分别是BC,CD和SC的中点.求证:

(1)直线EG∥平面BDD1B1
(2)平面EFG∥平面BDD1B1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是函数y=f(x)的导函数f′(x)的图象,则下面判断正确的是(

A.在区间(﹣2,1)上f(x)是增函数
B.在(1,3)上f(x)是减函数
C.在(4,5)上f(x)是增函数
D.当x=4时,f(x)取极大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1 , F2在x轴上,离心率e=

(1)求椭圆E的方程;
(2)求∠F1AF2的角平分线所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆 (a>b>0)的离心率为 ,以该椭圆上的点和椭圆的左、右焦点F1 , F2为顶点的三角形的周长为 .一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.

(1)求椭圆和双曲线的标准方程;
(2)设直线PF1、PF2的斜率分别为k1、k2 , 证明k1k2=1;
(3)探究 是否是个定值,若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案