| A. | [2k-1,2k+2](k∈Z) | B. | [2k+1,2k+3](k∈Z) | C. | [4k+1,4k+3](k∈Z) | D. | [4k+2,4k+4](k∈Z) |
分析 利用诱导公式、函数y=Asin(ωx+φ)的图象变换规律,得出结论.
解答 解:将函数f(x)=$\sqrt{3}$sin($\frac{π}{2}$+πx)=$\sqrt{3}$cosπx 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y=$\sqrt{3}$cos($\frac{1}{2}$πx)图象;
再把图象上所有的点向右平移1个单位,得到函数g(x)=$\sqrt{3}$cos[$\frac{1}{2}$π(x-1)]═$\sqrt{3}$cos($\frac{1}{2}$πx-$\frac{π}{2}$)=$\sqrt{3}$sin($\frac{1}{2}$πx)的图象.
令2kπ+$\frac{π}{2}$≤$\frac{π}{2}$x≤2kπ+$\frac{3π}{2}$,求得4k+1≤x≤4k+3,k∈Z,
可得函数g(x)的单调递减区间是[4k+1,4k+3](k∈Z,
故选:C.
点评 本题主要考查诱导公式的应用,函数y=Asin(ωx+φ)的图象变换规律,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题“?x∈R,使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0” | |
| B. | 命题p:“$?x∈R,sinx+cosx≤\sqrt{2}$”,则¬p是真命题 | |
| C. | ?α,β∈R,使得sin(α-β)=sinα-sinβ成立 | |
| D. | “x=-1”是“x2-2x-3=0”的必要不充分条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源:2017届山东临沭一中高三上学期10月月考数学(文)试卷(解析版) 题型:解答题
已知定义域为
的函数
是奇函数.
(1)求
,
的值;
(2)用定义证明
在
上为减函数;
(3)若对于任意
,不等式
恒成立,求
的范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com