精英家教网 > 高中数学 > 题目详情
7.函数f(x)=$\frac{1}{2}$arcsinx的定义域是[-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$],求此函数的值域.

分析 由条件利用反正弦函数的定义域和值域,求得此函数的值域.

解答 解:∵x∈[-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$],∴arcsinx∈[-$\frac{π}{3}$,$\frac{π}{6}$],∴函数f(x)=$\frac{1}{2}$arcsinx的值域为[-$\frac{π}{3}$,$\frac{π}{6}$].

点评 本题主要考查反正弦函数的定义域和值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知P(x0,y0)是双曲线C:$\frac{{x}^{2}}{2}-{y}^{2}$=1上的一点,F1,F2是C的两个焦点,若$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$≥0,则x0的取值范围是(  )
A.[-$\frac{2\sqrt{6}}{3}$,$\frac{2\sqrt{6}}{3}$]B.(-$\frac{2\sqrt{6}}{3}$,$\frac{2\sqrt{6}}{3}$)C.(-∞,-$\frac{2\sqrt{6}}{3}$]∪[$\frac{2\sqrt{6}}{3}$,+∞)D.(-∞,-$\frac{2\sqrt{6}}{3}$)∪($\frac{2\sqrt{6}}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知某程序框图如图所示,则执行该程序后输出的结果是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求y=$\frac{{x}^{2}+7x+10}{x+1}$(x>-1)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求圆O1:x2+y2+4x-4y+7=0关于直线x-2y-1=0对称的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)的定义域为(1,4),求f(log2|x-3|)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求过点A(4,1)且符合下列条件的直线方程.
(1)在y轴上的截距是在x轴上截距的3倍;
(2)在两坐标轴上的截距和为10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=AC=$\sqrt{3}$,BC=3,AA1=5,$\overrightarrow{BD}$=$\frac{1}{3}\overrightarrow{BC}$,$\overrightarrow{{B}_{1}{D}_{1}}$=$\frac{1}{3}\overrightarrow{{B}_{1}{C}_{1}}$,$\overrightarrow{D{P}_{1}}$=$\frac{3}{5}\overrightarrow{D{D}_{1}}$,一光线从A射出,第一次射到平面BCC1B1上点P1,经反射后第二次射到表面上点P2,依次下去,…,则P2P3=(  )
A.$\frac{\sqrt{10}}{6}$B.$\frac{\sqrt{10}}{4}$C.$\frac{\sqrt{10}}{3}$D.$\frac{\sqrt{10}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知双曲线x2-$\frac{y^2}{b^2}$=1(b>0)的虚轴长是实轴长的2倍,则实数b=2.

查看答案和解析>>

同步练习册答案