分析 根据基本不等式即可得到y=$\frac{{x}^{2}+7x+10}{x+1}$≥9,即可求出函数的值域.
解答 解:∵x>-1,
∴x+1>0,
∴y=$\frac{{x}^{2}+7x+10}{x+1}$=$\frac{{x}^{2}+x+6(x+1)+4}{x+1}$=x+1+$\frac{4}{x+1}$+5≥2$\sqrt{(x+1)•\frac{4}{x+1}}$+5=9,
当且仅当x+1=$\frac{4}{x+1}$,即x=1时取等号,
故y=$\frac{{x}^{2}+7x+10}{x+1}$(x>-1)的值域为[9,+∞).
点评 本题考查了函数值域的求法,采用基本不等式时常用方法,注意等号成立的条件,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | |$\overrightarrow{a}$-$\overrightarrow{b}$|=1 | B. | ($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{b}$ | C. | ($\overrightarrow{a}$-$\overrightarrow{b}$)•($\overrightarrow{a}$+$\overrightarrow{b}$)=$\frac{5}{2}$ | D. | ($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{b}$=-2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,+∞) | B. | $[\frac{17}{7},+∞)$ | C. | $[1,\frac{17}{7}]$ | D. | $(-∞,\frac{17}{7}]$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com