精英家教网 > 高中数学 > 题目详情
6.求不等式(2x+1)2(x-3)(3x-2)3(x-4)≤0的解集.

分析 第一步:通过不等式的诸多性质对不等式进行移项,使得右侧为0,(注意:一定要保证x前的系数为正数),第二步:将不等式号换成等号解出所有根,第三步:在数轴上从左到右依次标出各根,第四步:画穿根线:以数轴为标准,从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右根”上去,一上一下依次穿过各根,第五步:观察不等号,如果不等号为“>”,则取数轴上方,穿根线以内的范围;如果不等号为“<”则取数轴下方,穿根线以内的范围,x的次数若为偶数则不穿过,即奇过偶不过.

解答 解:(2x+1)2(x-3)(3x-2)3(x-4)≤0,
当(2x+1)2(x-3)(3x-2)3(x-4)=0,
解得x=-$\frac{1}{2}$或x=$\frac{2}{3}$,或x=3,或x=4,
将各根-$\frac{1}{2}$、$\frac{2}{3}$、3、4依次标在数轴上,
由图象可知不等式的解集为为(-∞,$\frac{2}{3}$]∪[3,4].

点评 本题考查了高次不等式的解法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$|\begin{array}{l}{m}&{cos2x}\\{n}&{sin2x}\end{array}|$的图象过点$(\frac{π}{12},\sqrt{3})$和点$(\frac{2π}{3},-2)$.
(1)求函数f(x)的最大值与最小值;
(2)将函数y=f(x)的图象向左平移φ(0<φ<π)个单位后,得到函数y=g(x)的图象;已知点P(0,5),若函数y=g(x)的图象上存在点Q,使得|PQ|=3,求函数y=g(x)图象的对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知P(x0,y0)是双曲线C:$\frac{{x}^{2}}{2}-{y}^{2}$=1上的一点,F1,F2是C的两个焦点,若$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$≥0,则x0的取值范围是(  )
A.[-$\frac{2\sqrt{6}}{3}$,$\frac{2\sqrt{6}}{3}$]B.(-$\frac{2\sqrt{6}}{3}$,$\frac{2\sqrt{6}}{3}$)C.(-∞,-$\frac{2\sqrt{6}}{3}$]∪[$\frac{2\sqrt{6}}{3}$,+∞)D.(-∞,-$\frac{2\sqrt{6}}{3}$)∪($\frac{2\sqrt{6}}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若x,y满足约束条件$\left\{\begin{array}{l}{y≥1}\\{2x-y-1≥0}\\{x+y-a≤0}\end{array}\right.$,且z=3x-2y+3的最小值为2,则实数a的值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知各项均为正数的数列{an}满足a1=1,an+2=1+$\frac{1}{{a}_{n}}$(n∈N*),若a2014=a2016,则a13+a2016=$\frac{21}{13}$+$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知向量|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{3}$,若向量$\overrightarrow{m}$满足|$\overrightarrow{m}$-$\overrightarrow{a}$-$\overrightarrow{b}$|=1,则|$\overrightarrow{m}$|的最大值是(  )
A.2$\sqrt{3}$-1B.2$\sqrt{3}$+1C.4D.$\sqrt{6}$+$\sqrt{2}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知某程序框图如图所示,则执行该程序后输出的结果是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求y=$\frac{{x}^{2}+7x+10}{x+1}$(x>-1)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=AC=$\sqrt{3}$,BC=3,AA1=5,$\overrightarrow{BD}$=$\frac{1}{3}\overrightarrow{BC}$,$\overrightarrow{{B}_{1}{D}_{1}}$=$\frac{1}{3}\overrightarrow{{B}_{1}{C}_{1}}$,$\overrightarrow{D{P}_{1}}$=$\frac{3}{5}\overrightarrow{D{D}_{1}}$,一光线从A射出,第一次射到平面BCC1B1上点P1,经反射后第二次射到表面上点P2,依次下去,…,则P2P3=(  )
A.$\frac{\sqrt{10}}{6}$B.$\frac{\sqrt{10}}{4}$C.$\frac{\sqrt{10}}{3}$D.$\frac{\sqrt{10}}{2}$

查看答案和解析>>

同步练习册答案