分析 由题意作出其平面区域,判断z=3x-2y+3的最小值为2时,结果可行域的点,求出点的坐标;代入x+y-a=0从而可得a.
解答
解:由题意作出x,y满足约束条件$\left\{\begin{array}{l}{y≥1}\\{2x-y-1≥0}\\{x+y-a≤0}\end{array}\right.$平面区域,
z=3x-2y+3的最小值为2,说明z=3x-2y+3经过图形中的A时直线的截距最大,z取得最小值.
结合图象可得,$\left\{\begin{array}{l}{3x-2y+1=0}\\{2x-y-1=0}\end{array}\right.$;
解得,x=3,y=5;
故直线x+y-a=0过点(3,5);
故a=8;
故答案为:8.
点评 本题考查了简单线性规划,作图要细致认真,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{3}{2}$,2] | B. | [$\frac{\sqrt{5}}{2}$,2] | C. | [$\frac{3}{2}$,$\sqrt{5}$] | D. | [$\frac{\sqrt{5}}{2}$,$\sqrt{5}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,+∞) | B. | $[\frac{17}{7},+∞)$ | C. | $[1,\frac{17}{7}]$ | D. | $(-∞,\frac{17}{7}]$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com