分析 根据点P是双曲线的左支上的一点,及双曲线的定义可知|PF1|-|PF2|=2a,由,∠F1PF2=$\frac{π}{3}$,且△PF1F2的面积为2$\sqrt{3}$,可以求得|PF2|•|PF1|的值,根据余弦定理可以求得a,c的一个方程,双曲线的离心率为2,根据双曲线的离心率的定义式,可以求得a,c的一个方程,解方程组即可求得该双曲线的方程.
解答 解:设双曲线方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),
F1(-c,0),F2(c,0),P(x0,y0).
在△PF1F2中,由余弦定理得,
|F1F2|2=|PF1|2+|PF2|2-2|PF1|•|PF2|•cos$\frac{π}{3}$
=(|PF1|-|PF2|)2+|PF1|•|PF2|,
即4c2=4a2+|PF1|•|PF2|,
又S△${\;}_{P{F}_{1}{F}_{2}}$=$\frac{1}{2}$|PF1|•|PF2|•sin$\frac{π}{3}$=2$\sqrt{3}$,
即有|PF1|•|PF2|=8,
可得4c2=4a2+8,即b2=2,
又e=$\frac{c}{a}$=2,且c2=a2+b2,
解得a2=$\frac{2}{3}$.
则双曲线的方程为$\frac{3{x}^{2}}{2}$-$\frac{{y}^{2}}{2}$=1.
点评 本题考查双曲线的定义和待定系数法求双曲线的标准方程,及利用余弦定理解圆锥曲线的焦点三角形,解题过程注意整体代换的方法,简化计算,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{2}$ | C. | 2$\sqrt{2}$-1 | D. | 均不正确 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 区间 | 人数 | 频率 | |
| 第1组 | [25,30) | 50 | 0.1 |
| 第2组 | [30,35) | 50 | 0.1 |
| 第3组 | [35,40) | a | 0.4 |
| 第4组 | [40,45) | 150 | b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{2\sqrt{6}}{3}$,$\frac{2\sqrt{6}}{3}$] | B. | (-$\frac{2\sqrt{6}}{3}$,$\frac{2\sqrt{6}}{3}$) | C. | (-∞,-$\frac{2\sqrt{6}}{3}$]∪[$\frac{2\sqrt{6}}{3}$,+∞) | D. | (-∞,-$\frac{2\sqrt{6}}{3}$)∪($\frac{2\sqrt{6}}{3}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4条 | B. | 3条 | C. | 2条 | D. | 1条 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com