精英家教网 > 高中数学 > 题目详情
2.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦距为2c,直线l过点(a,0)和(0,b),且点($\frac{a}{2}$,0)到直线l的距离d≥$\frac{1}{5}$c,则双曲线的离心率e的取值范围是(  )
A.[$\frac{3}{2}$,2]B.[$\frac{\sqrt{5}}{2}$,2]C.[$\frac{3}{2}$,$\sqrt{5}$]D.[$\frac{\sqrt{5}}{2}$,$\sqrt{5}$]

分析 求出直线l的方程,和点($\frac{a}{2}$,0)到直线l的距离,列出不等式得出a,b,c的关系,消去b,得出e的范围.

解答 解:直线l的方程为bx+ay-ab=0.
∴点($\frac{a}{2}$,0)到直线l的距离d=$\frac{\frac{1}{2}ab}{\sqrt{{a}^{2}+{b}^{2}}}$=$\frac{ab}{2c}$≥$\frac{1}{5}c$.
∴5ab≥2c2,即25a2(c2-a2)≥4c4
∴4c4+25a4-25a2c2≤0,
∵e=$\frac{c}{a}$,
∴4e4-25e2+25≤0,解得$\frac{5}{4}≤{e}^{2}≤5$.
∴$\frac{\sqrt{5}}{2}≤e≤\sqrt{5}$.
故选:D.

点评 本题考查了双曲线的性质,不等式的解法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点分别为F1(-$\sqrt{2}$,0),F2($\sqrt{2}$,0),以椭圆短轴为直径的圆经过点M(1,0).
(1)求椭圆C的方程;
(2)过点M的直线l与椭圆C相交于A、B两点,设点N(3,2),记直线AN,BN的斜率分别为k1,k2,问:k1+k2是否为定值?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.α,β,γ为不同的平面,a,b,c为三条不同的直线,则下列命题正确的是(  )
A.若α⊥γ,β⊥γ,则α∥βB.若a∥β,a∥b,则b∥β
C.若a∥α,b∥α,c⊥a,c⊥b,则c⊥αD.若a⊥γ,b⊥γ,则a∥b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.下列各式有无最大值,若有,试求之.
(1)y=3x(5-3x)(0<x<$\frac{5}{3}$);
(2)y=$\frac{{x}^{2}}{{x}^{4}+9}$(x≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知P(x0,y0)是双曲线C:$\frac{{x}^{2}}{2}-{y}^{2}$=1上的一点,F1,F2是C的两个焦点,若$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$≥0,则x0的取值范围是(  )
A.[-$\frac{2\sqrt{6}}{3}$,$\frac{2\sqrt{6}}{3}$]B.(-$\frac{2\sqrt{6}}{3}$,$\frac{2\sqrt{6}}{3}$)C.(-∞,-$\frac{2\sqrt{6}}{3}$]∪[$\frac{2\sqrt{6}}{3}$,+∞)D.(-∞,-$\frac{2\sqrt{6}}{3}$)∪($\frac{2\sqrt{6}}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若存在过点(1,0)的直线与曲线y=x3和y=ax2+$\frac{15}{4}$x-9都相切,则a的值为(  )
A.-1或-$\frac{25}{64}$B.-$\frac{23}{38}$C.-2D.-3或-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若x,y满足约束条件$\left\{\begin{array}{l}{y≥1}\\{2x-y-1≥0}\\{x+y-a≤0}\end{array}\right.$,且z=3x-2y+3的最小值为2,则实数a的值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知向量|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{3}$,若向量$\overrightarrow{m}$满足|$\overrightarrow{m}$-$\overrightarrow{a}$-$\overrightarrow{b}$|=1,则|$\overrightarrow{m}$|的最大值是(  )
A.2$\sqrt{3}$-1B.2$\sqrt{3}$+1C.4D.$\sqrt{6}$+$\sqrt{2}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)的定义域为(1,4),求f(log2|x-3|)的定义域.

查看答案和解析>>

同步练习册答案